
NTRU: A Ring-Based Public Key Cryptosystem

Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman

ABSTRACT. We describe NTRU, a new public key cryptosystem. NTRU features
reasonably short, easily created keys, high speed, and low memory requirements.
NTR.U encryption and decryption use a mixing system suggested by polynomial
algebra combined with a clustering principle based on elementary probability
theory. The security of the NTRU cryptosystem comes from the interaction of
the polynomial mixing system with the independence of reduction modulo two
relatively prime integers p and q.

CONTENTS

0. Introduction
1. Description of the NTRU algorithm

1.1. Notation
1.2. Key Creation
1.3. Encryption
1.4. Decryption
1.5. Why Decryption Works

2. Parameter Selection
2.1. Notation and a norm estimate
2.2. Sample spaces
2.3. A Decryption Criterion

3. Security Analysis
3.1. Brute force attacks
3.2. Meet-in-the-middle attacks
3.3. Multiple transmission attacks
3.4. Lattice based attacks

4. Practical Implementations of NTRU
4.1. Specific Parameter Choices
4.2. Lattice Attacks - - Experimental Evidence

5. Additional Topics
5.1. Improving Message Expansion
5.2. Theoretical Operating Specifications
5.3. Other Implementation Considerations
5.4. Comparison With Other PKCS's

6. Appendix

268 Jeffrey Hoffstein et al

w I n t r o d u c t i o n

There has been considerable interest in the creation of efficient and compu-
tationally inexpensive public key cryptosystems since Diffie and Hellman [3] ex-
plained how such systems could be created using one-way functions. Currently,
the most widely used public key system is RSA, which was created by Rivest,
Shamir and Adelman in 1978 [9] and is based on the difficulty of factoring large
numbers. Other systems include the McEliece system [8] which relies on error
correcting codes, and a recent system of Goldreich, Goldwasser, and Halevi [4]
which is based on the difficulty of lattice reduction problems.

In this paper we describe a new public key cryptosystem, which we call the
NTRU system. The encryption procedure uses a mixing system based on poly-
nomial algebra and reduction modulo two numbers p and q, while the decryption
procedure uses an unmixing system whose validity depends on elementary prob-
ability theory. The security of the NTRU public key cryptosystem comes from
the interaction of the polynomial mixing system with the independence of re-
duction modulo p and q. Security also relies on the (experimentally observed)
fact that for most lattices, it is very difficult to find extremely short (as opposed
to moderately short) vectors.

We mention that the presentation in this paper differs from an earlier, widely
circulated but unpublished, preprint [6] in that the analysis of lattice-based at-
tacks has been expanded and clarified, based largely on the numerous comments
received from Don Coppersmith, Johan H&stad, and Adi Shamir in person, via
email, and in the recent article [2]. We would like to take this opportunity to
thank them for their interest and their help.

NTRU fits into the general framework of a probabilistic cryptosystem as de-
scribed in [1] and [5]. This means that encryption includes a random element,
so each message has many possible encryptions. Encryption and decryption
with NTRU are extremely fast, and key creation is fast and easy. See Section 5
for specifics, but we note here that NTRU takes O(N 2) operations to encrypt
or decrypt a message block of length N, making it considerably faster than
the O(N 3) operations required by RSA. Further, NTRU key lengths are O(N),
which compares well with the O(N 2) key lengths required by other "fast" public
keys systems such as [8, 4].

w D e s c r i p t i o n of t he N T R U a l g o r i t h m

w N o t a t i o n . An NTRU cryptosystem depends on three integer parameters
(N,p, q) and four sets s s s162 s of polynomials of degree N - 1 with
integer coefficients. Note that p and q need not be prime, but we will assume
that gcd(p, q) = 1, and q will always be considerably larger than p. We work in
the ring R = Z[X] / (X N - 1). An element F E R will be written as a polynomial
or a vector,

N - - 1

F = ~ Fix i = [F0, F 1 , . . . , FN-1].
i----0

We write | to denote multiplication in R. This star multiplication is given

NTRU: A Ring-Based Public Key Cryptosystem 269

explicitly as a cyclic convolution product,

k N--1

F | with Hk=ZFiGk_i--}- ~_~ FiGN+k-,= ~_, F~Gj.
i=0 i = k + l i+j=k (rood N)

When we do a multiplication modulo (say) q, we mean to reduce the coefficients
modulo q.

Remark. In principle, computation of a product F | G requires N 2 multiplica-
tions. However, for a typical product used by NTRU, one of F or G has small
coefficients, so the computation of F | G is very fast. On the other hand, if N
is taken to be large, then it might be faster to use Fast Fourier Transforms to
compute products F | G in O(N log N) operations.

w K e y Crea t ion . To create an NTRU key, Dan randomly chooses 2 poly-
nomials f, g E /:g. The polynomial f must satisfy the additional requirement
that it have inverses modulo q and modulo p. For suitable parameter choices,
this will be true for most choices of f , and the actual computation of these in-
verses is easy using a modification of the Euclidean algorithm. We will denote
these inverses by Fq and Fp, that is,

Fq | f = 1 (mod q) and Fp @ f = 1 (mod p). (1)

Dan next computes the quantity

h - Fq | g (mod q). (2)

Dan's public key is the polynomial h. Dan's private key is the polynomial f ,
although in practice he will also want to store Fp.

w Ene ryp t ion . Suppose that Cathy (the encrypter) wants to send a mes-
sage to Dan (the decrypter). She begins by selecting a message m from the set
of plaintexts Z:m. Next she randomly chooses a polynomial r E Z:r and uses
Dan's public key h to compute

e = p r 1 7 4 (modq).

This is the encrypted message which Cathy transmits to Dan.

w Dec ryp t ion . Suppose that Dan has received the message e from Cathy
and wants to decrypt it using his private key f . To do this efficiently, Dan should
have precomputed the polynomial Fp described in Section 1.1.

In order to decrypt e, Dan first computes

a _ - - f | (modq),

where he chooses the coefficients of a in the interval from -q/2 to q/2. Now
treating a as a polynomial with integer coefficients, Dan recovers the message
by computing

Fp | a (modp).

270 Jeffrey Hoffstein et al

Remark. For appropriate parameter values, there is an extremely high proba-
bility tha t the decryption procedure will recover the original message. How-
ever, some parameter choices may cause occasional decryption failure, so one
should probably include a few check bits in each message block. The usual
cause of decryption failure will be that the message is improperly centered, In
this case Dan will be able to recover the message by choosing the coefficients of
a - f | e (mod q) in a slightly different interval, for example from -q/2 + x to
q/2 + x for some small (positive or negative) value of x. If no value of x works,
then we say that we have gap failure and the message cannot be decrypted as
easily. For well-chosen parameter values, this will occur so rarely tha t it can be
ignored in practice.

w W h y D e c r y p t i o n W o r k s . The polynomial a that Dan computes satis-
fies

a=_ f | f | 1 6 2 1 7 4 f | (mod q)

= f | 1 6 2 1 7 4 1 7 4 f | (modq)

= p r 1 7 4 f | f r o m (l) .

from (2),

Consider this last polynomial PC | g + f | m. For appropriate parameter
choices, we can ensure that (almost always) all of its coefficients lie between -q/2
and q/2, so that it doesn't change if its coefficients are reduced modulo q. This
means that when Dan reduces the coefficients of f | e modulo q into the interval
from -q /2 to q/2, he recovers exactly the polynomial

a = p r 1 7 4 1 7 4 in Z[X] / (XN-1) .

Reducing a modulo p then gives him the polynomial f | m (mod p), and mul-
tiplication by Fp retrieves the message m (mod p).

w P a r a m e t e r S e l e c t i o n

w N o t a t i o n a n d a n o r m e s t i m a t e . We define the width of an element
F E R to be

[F[o ~ = m a x { F i) - min { F i } .
I < i < N l~_i~_N

As our notat ion suggests, this is a sort of L ~ norm on R. Similarly, we define a
centered L 2 norm on R by

IFI2 = Fi-.~") 2 where /O 1 g , ~ F ~ ~

(Equivalently, I F I 2 / v ~ is the s tandard deviation of the coefficients of F .) The
following proposition was suggested to us by Don Coppersmith.

NTRU: A Ring-Based Public Key Cryptosystem 271

Proposition. For any ~ > 0 there are constants 71,72 > O, depending on
and N, such that for randomly chosen polynomials F, G E R, the probability is
greater than 1 - ~ that they satisfy

71 IF[2 IG[2 _< IF | G[o o _< 72 IFI2]GI2.

Of course, this proposition would be useless from a practical viewpoint if the
ratio 72/71 were very large for small e's. However, it turns out that even for
moderately large values of N and very small values of e, the constants 7x, 3'2 are
not at all extreme. We have verified this experimentally for a large number of
parameter values and have an outline of a theoretical proof.

w S a m p l e spaces . The space of messages s consists of all polynomials
modulo p. Assuming p is odd, it is most convenient to take

{ 1 1 }
s = m E R : re has coefficients lying between - ~ (p - 1) and ~ (p - 1) .

To describe the other samples spaces, we will use sets of the form

{ F has dl coefficients equal 1, }
/:(all,d2) = F G R : d2 coefficients equal -1 , the rest 0 "

With this notation, we choose three positive integers dr, dg, d and set

L:! = Z:(df,df - 1), s = s and L:r = s

(The reason we don't set s = s dl) is because we want f to be invertible,
and a polynomial satisfying f(1) = 0 can never be invertible.) Notice that
f E / : f , g E s and r E s162 have L 2 norms

Ifl2 = ~/2d! - 1 - N -1, Ig]2 = 1r = v ~ .

Later we will give values for dr, dg, d which allow decryption while maintaining
various security levels.

w A D e c r y p t i o n C r i t e r i o n . In order for the decryption process to work,
it is necessary tha t

] f | 1 6 2 1 7 4 <q.

We have found that this will virtually always be true if we choose parameters so
tha t

If | m[cr q/4 and IPr |162 < q/4,

and in view of the above Proposition, this suggests that we take

If]2 Im]2 ~ q/472 and 1r [gl2 ~ q/4p72 (3)

for a 72 corresponding to a small value for ~. For example, experimental evidence
suggests tha t for N = 107, N = 167, and N = 503, appropriate values for 72
are 0.35, 0.27, and 0.17 respectively.

272 Jeffrey Hoffstein et al

w Security Analysis
w B r u t e force a t tacks . An attacker can recover the private key by trying
all possible f E / : f and testing if f | (mod q) has small entries, or by trying all
g E/:g and testing i fg| -1 (mod q) has small entries. Similarly, an attacker can
recover a message by trying all possible r E/:r and testing if e - r | h (mod q)
has small entries. In practice, s will be smaller than/ :~, so key security is
determined by #/:g, and individual message security is determined by #/:~.
However, as described in the next section, there is a meet-in-the-middle attack
which (assuming sufficient storage) cuts the search time by the usual square
root. Hence the security level is given by

(Key 1 / N,
Security] = ~ = ~ V (N - 2dg)I

(Message~ 1 / N!

Security] - - ~ - - ~ (g - 2 d) I "

w Mee t - i n - t he -midd l e a t tacks . Recall that an encrypted message looks
like e - r | h + m (mod q). Andrew Odlyzko has pointed out that there is a
meet-in-the-middle attack which can be used against r and we observe that a
similar attack applies also to the private key] . Briefly, one splits f in half, say
f = f l § f2, and then one matches fl (~ e against - f 2 | e, looking for (fl, f2) so
that the corresponding coefficients have approximately the same value. Hence
in order to obtain a security level of (say) 28~ one must choose f , g, and r from
sets containing around 216~ elements. (For further details, see [13].)

w Mul t ip l e t r ansmiss ion a t tacks . If Cathy sends a single message m
several times using the same public key but different random r then the at-
tacker Betty will be able to recover a large part of the message. Briefly, suppose
that Cathy transmits ei - r 1 7 4 (mod q) for i = 1,2, . . . ,r. Betty can then
compute (ei - el) | h -1 (mod q), thereby recovering r - r (mod q). However,
the coefficients of the r are so small that she recovers exactly r - r and from
this she will recover many of the coefficients of r If r is even of moderate size
(say 4 or 5), Betty will recover enough of r to be able to test all possibilities for
the remaining coefficients by brute force, thereby recovering m. Thus multiple
transmission are not advised without some further scrambling of the underly-
ing message. We do point out that even if Betty decrypts a single message in
this fashion, this information will not assist her in decrypting any subsequent
messages.

w La t t i ce ba sed at tacks. The object of this section is to give a brief
analysis of the known lattice attacks on both the public key h and the message
m. We begin with a few words concerning lattice reduction. The goal of lattice
reduction is to find one or more "small" vectors in a given lattice. In theory,
the smallest vector can be found by an exhaustive search, but in practice this is
not possible if the dimension is large. The LLL algorithm of Lenstra-Lenstra-
Lovs [7], with various improvements due to Schnorr and others, [10, 12, 11]

NTRU: A Ring-Based Public Key Cryptosystem 273

will find relatively small vectors in polynomial time, but even LLL will take a
long time to find the smallest vector provided that the smallest vector is not
too much smaller than the expected length of the smallest vector. We will make
these observations more precise below.

w Lattice attack on an N T R U private key. Consider the 2N-by-2N ma-
tr ix composed of four N - b y - N blocks:

(a 0 . . . 0
0 a . . . 0

: ; " . .

0 0 . . .
O 0 " ' "

0 0 . . .

: : " . .

0 0 . . .

a hi
0 q
0 0
:

0 0

ho hi " " h N - 1
h N _ l ho . . . h N - 2

: " . . :

h2 " " ho
O ~ 1 7 6 O

q --. 0
: ".. :

0 --. q

(Here a is a parameter to be chosen shortly.) Let L be the lattice generated by
the rows of this matrix. The determinant of L is q g o ~ N .

Since the public key is h -- g | f - l , the lattice L will contain the vector
r = (a f , g), by which we mean the 2N vector consisting of the N coefficients of
f multiplied by a, followed by the N coefficients of g. By the gaussian heuristic,
the expected size of the smallest vector in a random lattice of dimension n and
determinant D lies between

D1/'LV ~2~re and D l l n ~ e.

In our case, n = 2N and D = qN~N, SO the expected smallest length is larger
(but not much larger) than

8_--,~ g ~ .
V ~-e

An implementation of a lattice reduction algorithm will have the best chance
of locating T, or another vector whose length is close to ~-, if the attacker chooses
~ to maximize the ratio s/Ir12. Squaring this ratio, we see that an attacker
should choose a so as to maximize

- I J:)

This is done by choosing a = [g[2 /If[2" (Note that [g[2 and If[2 are both public
quantities.)

When a is chosen in this way, we define a constant Ch by setting [T[2 ----- ChS.
Thus Ch is the ratio of the length of the target vector to the length of the expected

274 Jeffrey Hoffstein et al

shortest vector. The smaller the value of ch, the easier it will be to find the target
vector. Substi tuting in above, we obtain

Ifl Igl:

For a given pair (f , g) used to set up the cryptosystem, Ch may be viewed as a
measure of how far the associated lattice departs from a random lattice. If Ch is
close to 1, then L will resemble a random lattice and lattice reduction methods
will have a hard time finding a short vector in general, and finding T in particular.
As Ch decreases, lattice reduction algorithms will have an easier time finding T.
Based on the limited evidence we have obtained, the time required appears to
be (at least) exponential in N, with a constant in the exponent proportional to
Oh.

w La t t i ce a t t ack on an N T R U message . A lattice attack may also be
directed against an individual message m. Here the associated lattice problem
is very similar to tha t for h, and the target vector will have the form (am, r
As before, the attacker should balance the lattice using ~ = 1r which
leads to the value

 /2=e ImI Ir
Cm = " N q

This constant cm gives a measure of the vulnerability of an individual message
to a lattice attack, similar to the way Ch does for a lattice attack on h. An
encrypted message is most vulnerable if Cm is small, and becomes less so as cm

gets closer to 1.
In order to make the attacks on h and m equally difficult, we want to take

cm ~ Ch, or equivalently, Ill2 Igl2 ~ Iml~ 1r For concreteness, we will now
restrict to the case tha t p = 3; other values may be analyzed similarly. F o r p = 3,
an average message m will consist of N / 3 each of 1, 0 and - 1 , so Iml2 ~ V/2-N-/3.
Similarly, r consists of d each of 1 and - 1 , with the rest O's, so Ir = v f~ - Thus
we will want to set

Jfl Ig]2
This can be combined with the decryption criterion (3) to assist in choosing
parameters.

w La t t i ce a t t ack on a spur ious key. Rather than trying to find the pri-
vate key f , an attacker might use the lattice described above (in Section 3.4.1)
and t ry to find some other short vector in the lattice, say of the form ~.r =
(~fl,g~). If this vector is short enough, then f~ will act as a decryption key.
More precisely, if it turns out that with high probability,

f ' | 1 6 2 1 7 4 (modq)

satisfies]pC | g* + m | f~l~ < q, then decryption will succeed; and even if this
width is 2q or 3q, it is possible tha t the message could be recovered via error-
correcting techniques, especially if several such T~'S could be found. This idea,

NTRU: A Ring-Based Public Key Cryptosystem 275

which is due to Coppersmith and Shamir, is described in [2]. However exper-
imental evidence suggests that the existence of spurious keys does not pose a
security threat. See Section 4.2 for a further discussion of this point.

w P r a c t i c a l I m p l e m e n t a t i o n s of N T R U

w Specific P a r a m e t e r Choices. We will now present three distinct sets
of parameters which yield three different levels of security. The norms of f and
g have been chosen so that decryption failure occurs with probability less than
5.10-5(based on extensive computer experimentation).

Case A: M o d e r a t e Secur i ty
The Moderate Security parameters are suitable for situations in which the intrin-
sic value of any individual message is small, and in which keys will be changed
with reasonable frequency. Examples might include encrypting of television,
pager, and cellular telephone transmissions.

(N,p , q) = (107, 3, 64)

s -- s s = s s162 -- s (i.e., d = 5).

(In other words, f is chosen with 15 l 's and 14 - l ' s , g is chosen with 12 l 's and
12 - l ' s , and r is chosen with 5 l 's and 5 - l ' s .) These give key sizes

Private Key = 340 bits and Public Key -- 642 bits,

and (meet-in-the-middle) security levels

Key Security -- 250 and Message Security = 226"5.

(We note again that meet-in-the-middle attacks require large amounts of com-
puter storage; for straight search brute force attacks, these security levels should
be squared.) Substituting the above values into the appropriate formulas yields
lattice values

Ch---- 0.257, C,~ = 0.258, and s = 0.422q.

Case B: High Security
(N ,p ,q) -- (167,3,128)

s -- s s = s s162 = s 18) (i.e., d--- 18)

Private Key = 530 bits and Public Key = 1169 bits

Key Security = 2 s2'9 and Message Security = 277.5

Ch = 0.236, cm = 0.225, and s = 0.296q.

276 Jeffrey Hoffstein et al

C a s e C: H i g h e s t Secur i ty

(N , p , q) = (503, 3,256)

s = s s = s s162 = s (i.e., d = 55)

Private Key -- 1595 bits and Public Key -- 4024 bits

Key Security = 22s5 and Message Security = 217~

Ch = 0.182, Cm = 0.160, and s---- 0.0.365q.

w Lat t i ce A t t a c k s - - E x p e r i m e n t a l E v i d e n c e . In this section we de-
scribe our preliminary analysis of the security of the NTRU Public Key Cryp-
tosystem from attacks using lattice reduction methods. It is based on experi-
ments which were performed using version 1.7 of Victor Shoup's implementation
of the Schnorr,Euchner and Hoerner improvements of the LLL algorithm, dis-
tributed in his NTL package at ht tp: / /www, cs. wisc. e d u / - s h o u p / n t l / . The
NTL package was run on a 200 M Hz Pentium Pro with a Linux operating
system.

This algorithm has several parameters that can be adjusted to give varying
types of results. In general the LLL algorithm can be tuned to either find a
somewhat short point in a small amount of time or a very short point in a
longer time. The key quantity is the constant Ch (or Cm) described above. It
is somewhat easier to decrypt messages if these constants are small, somewhat
harder if they are close to 1. The idea is to choose a compromise value which
makes decryption easy, while still making it difficult for LLL to work effectively.

The following tables give the time required for LLL to find either the target
(a f , g) or a closely related vector in the lattice L of 3.4.1 for various choices of
q, Ch and dimension N. As will be elaborated on further in the Appendix, the
algorithm seems to find either a vector of the correct length, or one considerably
too long to be useful for decryption. Even if it were to find a spurious key
of length somewhat longer than the target, as discussed by Coppersmith and
Shamir in [2], it appears that the time required to find such a key would not be
significantly less than that required to find the true target.

We have chosen parameters so that Cm ~ Ch. (So the time required to break
an individual message should be on the same order as the time required to break
the public key). In all cases we found that when N gets sufficiently large the
algorithm fails to terminate, probably because of accumulated round off errors.
The tables end roughly at this point.

In this version of LLL there are three parameters that can be fine tuned to
optimize an attack. The tables give typical running times to break a key pair for
the most optimal choices of parameters we have found to date. The two columns
give results for two different floating point versions of the program, QP1 offering
higher precision. We then use this information to extrapolate running times for
larger values of N, assuming the algorithm were to terminate.

NTRU: A Ring-Based Public Key Cryptosystem 277

F P QP1

Case A
q--64

c=0.26

N time (secs)

75 561
80 1493
85 2832
90 4435
92 7440
94 12908
96 28534
98 129938

N time (secs)

75 1604
80 3406
85 5168
88 11298
90 16102
95 62321
96 80045
98 374034
100 183307

Case B
q=128
c=0.23

N time (secs)

75 600
80 953
85 1127
90 3816
95 13588

N time (secs)

75 3026
80 5452
85 8171
90 20195
95 57087
100 109706

Case C
q=256
c=0.18

N

75
80
85
90
95
100
102

time (secs)

547
765
1651
2414
2934
7471
8648

N time (secs)

75 2293
78 3513
81 3453
84 5061
87 6685
90 9753
93 16946
96 19854
99 30014
102 51207
105 75860
108 145834

We will write t(N) for the time in seconds necessary to break a public key cor-
responding to a parameter N. When we graph log t(N) against N, the examples
we have done seem to indicate that the graph has a positive slope with a small
positive concavity. This would indicate that t(N) grows at least exponentially
with N, and possibly even with N log N. To extrapolate out to higher values
of N, we have taken the information we have and approximated a lower bound
for the slope of log t(N) against N. This gives the following rough estimates for

278 Jeffrey Hoffstein et al

t(N) in seconds using FP:

t(N) > 12908 exp[(0.396)(N - 94)]

t(N) > 13588exp[(0.291)(N - 95)]

t(N) > 2414exp[(0.10)(N - 92)]

(Moderate Security)

(High Security)

(Highest Security)

The running times for QP1 are longer for small N, but yield a better exponential
constant, so for QP1 we obtain:

t(N) > 80045 exp[(0.207)(N - 96)]

t(N) > 8171 exp[(0.17315)(N - 85)]

t(N) > 30014 exp[(0.17564)(N - 99)]

(Moderate Security)

(High Security)

(Highest Security)

These lower bounds yield the following estimates for the time necessary to break
the different levels of NTRU security using QP1 running on one 200 MHz Pen-
tium Pro:

Type Level q c N

QP1 Moderate 64 0.26 107

QP1 High 128 0.23

QP1 Highest 256 0.18

Time (seconds)

780,230 (9 days)

167 1.198- 10 l~ (380 years)

503 1.969- 1038 (6.2.1027 years)

A more detailed analysis and description of the lattice experiments is given
in the Appendix.

w A d d i t i o n a l Topics

w Improv ing Message Expansion. The NTRU PKCS's for the sample
parameters presented in Section 4.1 have moderate message expansions. How-
ever, as the principal use for PKCS's is the exchange of a private key in a single
message block this is not a significant problem. It may be worth mentioning,
though, that there is a simple way that the NTRU technique can be used to
convey a very long message, with an expansion of only 1-1 after the first mesage
block.

With this approach, the first encrypted message el that Cathy sends is de-
crypted as a sequence of l's, O's and - l ' s (taking p = 3) and interpreted as a r
for the next message block. The next encrypted message block is r | el + ml,
where ml is the first block of the actual message. As Dan knows r he can
recover ml mod q exactly. The next encrypted message block Cathy sends is
e2 = r174 +m2, where Cathy derived r from ml by squaring ml and reducing
it mod 3. Dan can now recover r as he knows ml, and hence can derive m2
mod q from e2. This can continue for a message of arbitrary length.

w Theore t i ca l Opera t ing Specifications. In this section we consider
the theoretical operating characteristics of the NTRU PKCS. There are three

NTRU: A Ring-Based Public Key Cryptosystem 279

integer parameters (N, p, q), four sets s s162 determined respectively by
integers d f , d g , d , p as described in Sections 1.1 and 2.2. The following table
summarizes the NTRU PKCS operating characteristics in terms of these param-
eters.

Plain Text Block N log 2 p bits

Encrypted Text Block N log 2 q bits

Encryption Speed* O (N 2) operations

Decryption Speed O (N 2) operations

Message Expansion logp q-to-1

Private Key Length 2N log 2 p bits

Public Key Length N log 2 q bits
* Prec ise ly , 4 N 2 w i d i t i o n s a n d N divis ions by q with remainder

w Other Implementation Considerations. We briefly mention some
additional factors which should be considered when implementing NTRU.

(1) It is important that gcd(q, p) = 1. Although in principle NTRU will work
without this requirement, in practice having gcd(q,p) > 1 will decrease
security. At the extreme range, if Plq, then the encrypted message e
satisfies e - m (mod p), so it is completely insecure.

(2) We want most f ' s to have inverses modulo p and modulo q, since other-
wise it will be hard to create keys. A first necessary requirement is that
gcd(f(1) ,pq) = 1, but if this fails for some chosen f , the code creator
can instead use, say, . f (X) + 1 or . f (X) - 1. Assuming gcd(.f(1),pq) = 1,
virtually all f ' s will have the required inverses if we take N to be a prime
and require that for each prime P dividing p and q, the order of P in
(Z/NZ)* is large, say either N - 1 or (N - 1)/2. For example, this will
certainly be true if (N - 1)/2 is itself prime (i.e., N is a Sophie Germaln
prime). Examples of such primes include 107, 167 and 503.

w Comparison With Other PK CS ' s . There are currently a number
of public key cryptosystems in the literature, including the system of Rivest,
Shamir, and Adelman (RSA [9]) based on the difficulty of factoring, the system of
McEliece [8] based on error correcting codes, and the recent system of Goldreich,
Goldwasser, and Halevi (GGH [4]) based on the difficulty of finding short almost-
orthogonalized bases in a lattice.

The NTRU system has some features in common with McEliece's system,
in that | in the ring R can be formulated as multiplication of
matrices (of a special kind), and then encryption in both systems can be written
as a matrix multiplication E = A X + Y , where A is the public key. A minor
difference between the two systems is that for an NTRU encryption, Y is the
message and X is a random vector, while the McEliece system reverses these
assignments. But the real difference is the underlying trap-door which allows
decryption. For the McEUece system, the matrix A is associated to an error
correcting (Goppa) code, and decryption works because the random contribution
is small enough to be "corrected" by the Goppa code. For NTRU, the matrix A

280 Jeffrey Hoffstein et al

is a circulant matrix, and decryption depends on the decomposition of A into
a product of two matrices having a special form, together with a lifting from
mod q to mod p.

As far as we can tell, the NTRU system has little in common with the RSA
system. Similarly, although the NTRU system must be set up to prevent lattice
reduction attacks, its underlying decryption method is very different from the
GGH system, in which decryption is based on knowledge of short lattice bases.
In this aspect, GGH actually resembles the McEliece system, since in both cases
decryption is performed by recognizing and eliminating a small random contri-
bution. Contrasting this, NTRU eliminates a much larger random contribution
via divisibility (i.e., congruence) considerations.

The following table compares some of the theoretical operating characteris-
tics of the RSA, McEliece, GGH, and NTRU cryptosystems. In each case the
number N represents a natural security/message length parameter.

Encryption Speed (1,2)

Decryption Speed (3)

Public Key

Private Key

Message Expansion (4)

NTRU

N 2

N 2

N

N

varies

RSA

N 2

N 3

N

N

1-1

McEliece

N 2

N 2

N 2

N 2

2-1

GGH

N 2

N 2

N 2

N 2

1-1

(1) NTRU encryption requires only addit ions and shifts, no other mult ipl icat ions
(2) RSA encryption is O(N a) unless small eneryption exponents are used.
(a) Asymptotical ly, NTRU encryption and decryption are O(N log N) using FFT.
(4) For NTRU, see Section 5.1.

We have made some preliminary timing comparisons between NTRU and
RSA, using information available from RSA's web page. The NTRU program
we used was written in C and not optimized for speed.

The main uses to which PKCS's are applied are the exchange of secret keys
and short messages. Also, RSA, ECC and NTRU all work in units of "message
blocks," and any message block in any of these systems is large enough to hold
a secret key of very high security, or a short message. Thus for comparison
purposes, in the following we interpreted a key encryption or decryption in a
PKCS to be the process of encrypting or decrypting one message block. Numbers
given for encryption and decryption are message blocks processed per second.

The information is summarized in the following tables:

Security Encrypt Decrypt Create
Level (blks/sec) (blks/sec) key (sec)

Moderate 1818 505 0.1080

High 649 164 0.1555

Highest 103 19 0.8571

NTRU: 75 MHz Pent ium, running MSDOS

NTRU: A Ring-Based Public Key Cryptosystem 281

Security
Level

Moderate

High

Highest

Encrypt Decrypt Create
(blks/sec) (blks/sec) key (sec)

16666 2273 0.0079

4762

730

724

79

0.0184

0.1528

NTRU: 200 MHz Pentium Pro, running Linux

RSA: 255 MHz Digital AlphaStation

Comparing NTRU and RSA on the Pentium 75 and 90 platforms, adjusting
for clock speed, and comparing the moderate NTRU security level to 512 bit RSA
security level, we find that NTRU is 5.9 times faster at encryption, 14.4 times
faster at decryption and 5.0 times faster at key creation. Similarly comparing
the highest NTRU security level to the 1024 bit RSA security level, NTRU is the
same speed at encryption, 3.2 times faster at decryption, and 5.3 times faster at
key creation.

The 200 MHz Pentium pro and the 256 MHz Digital Alpha are sufficiently
different that there is no obvious way to precisely compare one to the other. But
simply comparing the raw numbers it is interesting to note that in spite of the
slower clock speed, NTRU comes out 16, 18 and 33 times faster at encryption,
decryption and key creation at moderate security, and 2, 3 and 8 times faster at
high security.

For related timings of ECC, we refer to Certicom's published report: "Certi-
com Releases Security Builder 1.2 Performance Data" According to their report
(available at http://www.certicom.com/secureb.htm), on a Pentium platform
ECC takes 4.57 times as long as RSA to encrypt a message block, and 0.267
times as long to decrypt a message block. Thus compared to RSA, ECC wins by
a factor of about 4 when decrypting, but loses by a factor of 4 when encrypting.

Acknowledgments. We would like to thank Don Coppersmith, Johan H~stad,
Hendrik Lenstra Jr., Bjorn Poonen, Adi Shamir, Claus Schnorr and Benne de

Security Encrypt Decrypt Create
Level (blks/sec) (blks/sec) key (sec)

512 bit 370 42 0.45

768 bit 189 15 1.5

1024 bit 116 7 3.8

RSA: 90MHz Pentium

Security Encrypt Decrypt Create
Level (blks/sec) (blks/sec) key (sec)

512 bit 1020 125 0.26

768 bit 588 42 0.59

1024 bit 385 23 1.28

282 Jeffrey Hoffstein et al

Weger for their help with lattice reduction methods, Philip Hirschhorn for his
assistance in implementing NTRU and doing LLL testing, Victor Shoup for his
NTL package, Martin Mohlenkamp for several enlightening conversations about
this package, Andrew Odlyzko for pointing out the meet-in-the-middle attack
and other helpful suggestions, Mike Rosen for his help with polynomial inverses,
and Dan Lieman for his assistance in all phases of this project. In particular, our
analysis of lattice-based attacks is an amalgamation of the suggestions of Don
Coppersmith, Johan Hhstad, and Adi Shamir, combined with some thoughts of
our own, although we stress that any oversights or errors in this analysis are
entirely of our own devising.

REFERENCES

1. M. Blum, S. Goldwasser, An efficient probabilistic public-key encryption scheme which
hides all partial information, Advances in Cryptology: Proceedings of CRYPTO 84, Lec-
ture Notes in Computer Science, vol. 196, Springer-Verlag, 1985, pp. 289-299.

2. D. Coppersmith, A. Shamir, Lattice attacks on NTRU, Preprint, April 5, 1997; presented
at Eurocrypt 97.

3. W. Diffie, M.E. Hellman, New directions in cryptography, IEEE Trans. on Information
Theory 22 (1976), 644-654.

4. O. Goldreich, S. Goldwasser, S. Halevi, Public-key cryptosystems from lattice reduction
problems, MIT - Laboratory for Computer Science preprint, November 1996.

5. S. Goldwasser and A. Micali, Probabilistic encryption, J. Computer and Systems Science
28 (1984), 270-299.

6. J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key cryptosystem,
Preprint; presented at the rump session of Crypto 96.

7. A.K. Lenstra, H.W. Lenstra, L. Lov~z, Factoring polynomials with polynomial coel~icients,
Math. Annalen 261 (1982), 515-534.

8. R.J. McEliece, A public-key cryptosystem based on algebraic coding theory, JPL Pasadena,
DSN Progress Reports 42-44 (1978), 114-116.

9. R.L. Rivest, A. Sharnir, L. Adleman, A method for obtaining digital signatures and public
key cryptosystems, Communications of the ACM 21 (1978), 120-126.

10. C.P. Schnorr, Block reduced lattice bases and successive minima, Combinatorics, Proba-
bility and Computing 3 (1994), 507-522.

11. C.P. Schnorr, M. Euchner, Lattice basis reduction: improved practical algorithms and
solving subset sum problems, Mathematical Programing 6 6 (1994), 181-199.

12. C.P. Schnorr, H.H. Hoerner, Attacking the Chor Rivest cryptosystem by improved lattice
reduction, Proc. EUROCRYPT 1995, Lecture Notes in Computer Science 921, Springer-
Verlag, 1995, pp. 1-12.

13. J.H. Silverman, A Meet-In-The-Middle Attack on an NTRU Private Key, preprint.

NTRU: A Ring-Based Public Key Cryptosystem 283

w Appendix - Some remarks on the impementat ion
of the Schnorr-Euchner improvements of LLL

The LLL algorithm produces, from a given basis for a lattice, a reduced basis
whose first vector is guaranteed to be relatively short. Part of this procedure
involves minimizing the length of linear combinations of basis vectors, taking
"blocks" of two at a time. If one minimized the length of linear combinations of
basis vectors, taking as a block the entire basis, then an actual shortest vector
could be found, but the time to produce it would be exponential in the dimension.
One of Schnorr and Euchner's improvements (see [10, 11, 12] was to add an
extra degree of flexibility. They minimize over blocks of vectors of size greater
than two, but less than the dimension. This results in shorter vectors than are
generally found by the original LLL algorithm, i.e with block size equal 2, but
causes an increase in running time which is exponential in the block size.

In NTL 1.7 the blocksize ~ can be chosen, as well as a second parameter p
which Schnorr and Hoerner introduced. This is intended to moderate the in-
crease in running time as ~ increases. The "pruning" parameter p halts the
minimization process when the probability of finding a shorter vector than al-
ready found within a given block falls below a prescribed value which depends on
p. This probability is computed via the gaussian volume heuristic, the validity
of which depends on the randomness of the lattice.

There is a third parameter ~ which is allowed to vary between 0.5 and 1.0.
This parameter determines how frequently a certain recursive operation is per-
formed. The program recommends setting ~ = .99, and we have followed this
recommendation.

In our experiments we varied the choice of Ch and of the blocksize ~ and
pruning factor p. We never observed, even for larger values of ~, a noticeable
improvement from the pruning procedure and finally set p = 0, so the pruning
procedure was not called.

The following tables give a more complete set of information which includes
the choice of ~ and the ratio of the smallest vector found to the target vector.
We observed that for small values of ~ the algorithm would fail to find a vector
useful for decryption. In fact it would most likely produce a q-vector, that is to
say a vector with a single coordinate equal to q and the rest all zero. The initial
basis for L contains N of these vectors, which are in fact not much longer than
the length s = ~] v e of the shortest expected vector. As ~ increased, the
smallest vector found would continue to be a q-vector until a certain threshold
was passed, which depended on N and Ch. (Increasing with N, decreasing with
Ch). After this threshold, if the algorithm terminated it would usually succeed
in finding the target vector. On some occasions it would find a vector slightly
smaller than a q-vector and then at the next blocksize succeed in finding the
target. The general pattern is that for fixed Ch the blocksize would have to
increase with N in order for the algorithm to succeed in finding the target. At
slightly smaller blocksizes the time required would be on the same order as the
time required to find the target but the vector found - - either the q-vector or
slightly smaller - - would be useless for decryption purposes.

284 Jeffrey Hoffstein et al

In Table 1 timings are given for a lattice corresponding to Ch = 0.26 with
I/J2 = [g[2- This is the equivalent to the moderate security lattice attack, but
the balancing of f and g makes it possible to work with smaller integers and
the NTL program runs, with some exceptions, more efficiently. Notice that
the necessary blocksize increases monotonically with N. In the Tables 2, 3
and 4, timings are given for moderate, high and highest security. These are
again formed with If[2 = [912, and the moderate security table is a repeat to
give some idea of the variation that occurs. Finally, Table 5 is formed with
[f[2 and [g[2 taking the same ratio as in the actual encryption procedure. The
a = 0.9097 indicates that the lattice has been balanced to optimize the chances of
an attacker. Note that the times are roughly the same as the equivalent situation
in Tables 1 and 2, but timing deteriorates very substantially at N = 98. Notice
some curiously short timings at N = 90 in Tables 2 and 5. These occurred when
the algorithm terminated after locating a particular short vector: (if, f f | h),
with f ' = (1 , - 1 , 1 , - 1 , 1 , . . .) . The value of f ' | h is then (k , - k , k , . . .) , for
some k, with k taking the value 1 or - 1 with probability 2/q. If this happens,
(if, f f | h) is short, but as ff is highly non-invertible it is useless for decryption
purposes.

NTRU: A Ring-Based Public Key Cryptosystem 285

N

75
8O
8O
8O
8O
85
85
85
85
85
85
90
90
90
90
90
90
90
90
95
95
95
95
95
95
95
95
95
95
100
100
100
100
100
100
100
100
100
100

Tab l e

Block
size

6
4
6
8
10
4
6
8
10
12
14
4
6
8
10
12
14
16
18
4
6
8
10
12
14
16
18
2O
22
4
6
8
10
12
14
16
18
20
22

1: BKZ-C

Running
time (sec)

1910
1823
2731
3285
3663
2091
3661
5012
5497
7438
7433
3382
3305
5910
7173
7367

12182
16102
18920
3019
4434
7707
9449
11308
14520
22348
23965
81028
62321
4020
6307
9225
11109
13381
19096
23850
40670
72130

444773

Actual
Total
Norm

6.32
6.48
6.78
6.48
6.63
6.93
6.78
6.93
6.78
6.93
7.07
6.93
6.78
6.78
6.78
6.78
6.93
6.78
6.93
7.21
7.07
7.07
7.35
7.21
7.21
7.O7
7.21
7.07
7.35
7.21
7.07
7.07
7.07
7.07
7.21
7.07
7.21
7.21
7.21

Smallest
Norm
Found

6.32
64.00
64.00
64.00
6.63

64.00
64.00
64.00
64.00
64.00
7.07

64.00
64.00
64.00
64.00
64.00
64.00
6.78
6.93
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
7.35

64.00
64.00
64.00
64.00
64.00
64.00
64.00
50.99
64.00
7.21

Ratio of
found to

actual

1.0
9.9
9.4
9.9
1.0
9.2
9.4
9.2
9.4
9.2
1.0
9.2
9.4
9.4
9.4
9.4
9.2
1.0
1.0
8.9
9.1
9.1
8.7
8.9
8.9
9.1
8.9
9.1
1.0
8.9
9.1
9.1
9.1
9.1
8.9
9.1
7.1
8.9
1.0

P1 w i t h Q = 64, c = 0,26, 5 = 0.99, a n d p r u n e = 0

286 Jeffrey Hoffstein et al

N Block
size

75 4
75 6
80 6
80 8
85 8
85 10
85 12
85 14
85 16
88 16
90 16
90 18
95 18
95 19
95 20
96 20
98 20
98 22
100 22

2 h b l e 2: B K Z - (

N Block
size

75 2
75 4
75 6
75 8
8O 8
80 10
85 10
85 12
90 12
90 14
90 16
95 16
95 18
95 20
100 20

Running
t ime (sec)

Actual
Total
Norm

Smallest
Norm
Found

1797
1604
2776
3406
4614
5898
7536
8106
5168
11298
12987

2
25908
36754
59664
80045
75365

374034
183307

6.16
6.48
6.78
6.63
6.93
6.78
6.93
7.21
6.78
6.93
6.93
6.78
7.21
7.21
7.21
7.07
7.21
7.07
7.07

64.00
6.48

64.00
6.63

64.00
64.00
64.00
64.00
6.78
6.93

64.00
13.42
64.00
64.00
64.00
7.07

64.00
7.07
7.07

Ratio of
found to

actual

10.4
1.0
9.4
1.0
9.2
9.4
9.2
8.9
1.0
1.0
9.2
2.0
8.9
8.9
8.9
1.0
8.9
1.0
1.0

P 1 w i t h Q = 64, c = 0.26, ~ = 0.99

Actual
Total
Norm

Smallest
Norm
Found

Running
t ime (see)

1067
2699
3244
3026
6022
5452
10689
8171
15304
17802
20195
31338
54490
57087
109706

8.00
8.00
8.12
7.87
8.37
8.12
8.37
8.37
8.60
8.83
8.60
9.17
8.94
8.83
9.17

128.00
121.90
121.04

7.87
124.54
8.12

124.26
8.37

128.00
126.60

8.60
128.00
128.00
8.83
9.17

a n d p r u n e = 0

Ratio of
found to

actual

16.0
15.2
14.9
1.0

14.9
1.0

14.9
1.0

14.9
14.3
1.0

14.0
14.3
1.0
1.0

T a b l e 3 : B K Z - Q P 1 w i t h Q = 128, c = 0.23, 5 = 0.99, a n d p r u n e = 0

NTRU: A Ring-Based Public Key Cryptosystem 287

N Block
size

75 4
75 20
78 4
81 4
81 6
84 6
87 6
9O 6
90 8
93 8
93 10
93 12
96 12
96 14
99 14
102 14
102 16
102 18
105 18
105 20
108 2O
108 22

Running
time (sec)

2293
1930
3513
3422
3453
5061
6685
7085
9753
11900
14671
16946
22684
19854
30014
30817
64718
51207
81336
75860
197697
145834

Actual
Total
Norm

Smallest
Norm
Found

8.60
8.72
8.94
9.38
9.17
9.17
9.38
9.49
9.59
9.90
9.80
9.70
9.80
9.90
10.00
10.20
10.39
10.39
10.58
10.30
10.30
10.30

8.60
8.72
12.25

221.22
9.17
9.17
9.38

256.00
9.59

254.55
237.58
9.70

231.59
9.90
10.00

239.62
223.64
10.39

244.38
10.30

255.87
10.30

Ratio of
found to

actual

1.0
1.0
1.4

23.6
1.0
1.0
1.0

27.0
1.0

25.7
24.2
1.0

23.6
1.0
1.0

23.5
21.5
1.0

23.1
1.0

24.9
1.0

Table 4 : B K Z - Q P 1 wi th Q = 256, c = 0.18, 5 = 0.99, and p r u n e = 0

288 Jeffrey Hoffstein et al

N Block
size

75 2
75 4
75 6
80 6
85 6
85 8
85 10
85 12
85 14
85 16
85 18
90 18
95 18
95 20
95 22
96 22
96 24
98 24

Running
time (sec)

808
1895
2363
3582
5412
7252
8633
10074
12371
17729
16095

4
37998
43108
200195
240563
68054

1369730

Actual
Total
Norm

6000.00
6000.00
6000.00
6164.41
6324.56
6324.56
6324.56
6324.56
6324.56
6324.56
6324.56
6480.74
6633.25
6633.25
6633.25
6633.25
6633.25
6782.33

Smallest
Norm
Found

64000.0
64000.0
7857.87
6164.78
64000.0
64000.0
64000.0
64000.0
64OOO.O
64000.0
6630.40
12820.5
64000.0
64000.0
69O0.34
64O00.0
6779.54
6852.89

Ratio of
found to

actual

10.7
10.7
1.3
1.0

10.1
10.1
10.1
10.1
10.1
10.1
1.0
2.0
9.6
9.6
1.0
9.6
1.0
1.0

Table 5:BKZ-_QP1 wi th Q = 64, c = 0.26,
= 0.9097, ~ = 0.99, and p r u n e = 0

Jeffrey Hoffstein, Mathematics Department, Box 1917, Brown University, Prov-
idence, RI 02912 USA. (jhoff@ntru.com), (jhoff@math.brown.edu)

Jill Pipher, Mathematics Department, Box 1917, Brown University, Providence,
RI 02912 USA. (jpipher@ntru.com), (jpipher@math.brown.edu)

Joseph H. Silverman, Mathematics Department, Box 1917, Brown University,
Providence, RI 02912 USA. (jhs@ntru.com), (jhs@math.brown.edu)

