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ABSTRACT. We describe NTRU, a new public key cryptosystem. NTRU features 
reasonably short, easily created keys, high speed, and low memory requirements. 
NTR.U encryption and decryption use a mixing system suggested by polynomial 
algebra combined with a clustering principle based on elementary probability 
theory. The security of the NTRU cryptosystem comes from the interaction of 
the polynomial mixing system with the independence of reduction modulo two 
relatively prime integers p and q. 
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w I n t r o d u c t i o n  

There has been considerable interest in the creation of efficient and compu- 
tationally inexpensive public key cryptosystems since Diffie and Hellman [3] ex- 
plained how such systems could be created using one-way functions. Currently, 
the most widely used public key system is RSA, which was created by Rivest, 
Shamir and Adelman in 1978 [9] and is based on the difficulty of factoring large 
numbers. Other systems include the McEliece system [8] which relies on error 
correcting codes, and a recent system of Goldreich, Goldwasser, and Halevi [4] 
which is based on the difficulty of lattice reduction problems. 

In this paper we describe a new public key cryptosystem, which we call the 
NTRU system. The encryption procedure uses a mixing system based on poly- 
nomial algebra and reduction modulo two numbers p and q, while the decryption 
procedure uses an unmixing system whose validity depends on elementary prob- 
ability theory. The security of the NTRU public key cryptosystem comes from 
the interaction of the polynomial mixing system with the independence of re- 
duction modulo p and q. Security also relies on the (experimentally observed) 
fact that for most lattices, it is very difficult to find extremely short (as opposed 
to moderately short) vectors. 

We mention that the presentation in this paper differs from an earlier, widely 
circulated but unpublished, preprint [6] in that the analysis of lattice-based at- 
tacks has been expanded and clarified, based largely on the numerous comments 
received from Don Coppersmith, Johan H&stad, and Adi Shamir in person, via 
email, and in the recent article [2]. We would like to take this opportunity to 
thank them for their interest and their help. 

NTRU fits into the general framework of a probabilistic cryptosystem as de- 
scribed in [1] and [5]. This means that encryption includes a random element, 
so each message has many possible encryptions. Encryption and decryption 
with NTRU are extremely fast, and key creation is fast and easy. See Section 5 
for specifics, but we note here that NTRU takes O(N 2) operations to encrypt 
or decrypt a message block of length N, making it considerably faster than 
the O(N 3) operations required by RSA. Further, NTRU key lengths are O(N),  
which compares well with the O(N 2) key lengths required by other "fast" public 
keys systems such as [8, 4]. 

w D e s c r i p t i o n  of  t he  N T R U  a l g o r i t h m  

w N o t a t i o n .  An NTRU cryptosystem depends on three integer parameters 
(N,p, q) and four sets s s s162 s of polynomials of degree N -  1 with 
integer coefficients. Note that p and q need not be prime, but we will assume 
that gcd(p, q) = 1, and q will always be considerably larger than p. We work in 
the ring R = Z[X] / (X  N - 1). An element F E R will be written as a polynomial 
or a vector, 

N - - 1  

F = ~ Fix i = [F0, F 1 , . . . ,  FN-1]. 
i----0 

We write | to denote multiplication in R. This star multiplication is given 
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explicitly as a cyclic convolution product, 

k N--1  

F |  with Hk=ZFiGk_i--}- ~_~ FiGN+k-,= ~_, F~Gj. 
i=0  i = k + l  i+j=k (rood N) 

When we do a multiplication modulo (say) q, we mean to reduce the coefficients 
modulo q. 

Remark. In principle, computation of a product F | G requires N 2 multiplica- 
tions. However, for a typical product used by NTRU, one of F or G has small 
coefficients, so the computation of F | G is very fast. On the other hand, if N 
is taken to be large, then it might be faster to use Fast Fourier Transforms to 
compute products F | G in O(N log N) operations. 

w K e y  Crea t ion .  To create an NTRU key, Dan randomly chooses 2 poly- 
nomials f, g E /:g. The polynomial f must satisfy the additional requirement 
that it have inverses modulo q and modulo p. For suitable parameter choices, 
this will be true for most choices of f ,  and the actual computation of these in- 
verses is easy using a modification of the Euclidean algorithm. We will denote 
these inverses by Fq and Fp, that is, 

Fq | f = 1 (mod q) and Fp @ f = 1 (mod p). (1) 

Dan next computes the quantity 

h - Fq | g (mod q). (2) 

Dan's public key is the polynomial h. Dan's private key is the polynomial f ,  
although in practice he will also want to store Fp. 

w Ene ryp t ion .  Suppose that Cathy (the encrypter) wants to send a mes- 
sage to Dan (the decrypter). She begins by selecting a message m from the set 
of plaintexts Z:m. Next she randomly chooses a polynomial r E Z:r and uses 
Dan's public key h to compute 

e = p r 1 7 4  (modq). 

This is the encrypted message which Cathy transmits to Dan. 

w Dec ryp t ion .  Suppose that Dan has received the message e from Cathy 
and wants to decrypt it using his private key f .  To do this efficiently, Dan should 
have precomputed the polynomial Fp described in Section 1.1. 

In order to decrypt e, Dan first computes 

a _ - - f |  (modq), 

where he chooses the coefficients of a in the interval from -q/2 to q/2. Now 
treating a as a polynomial with integer coefficients, Dan recovers the message 
by computing 

Fp | a (modp). 
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Remark. For appropriate parameter  values, there is an extremely high proba- 
bility tha t  the decryption procedure will recover the original message. How- 
ever, some parameter  choices may cause occasional decryption failure, so one 
should probably include a few check bits in each message block. The usual 
cause of decryption failure will be that  the message is improperly centered, In 
this case Dan will be able to recover the message by choosing the coefficients of 
a - f | e (mod q) in a slightly different interval, for example from -q/2  + x to 
q/2 + x for some small (positive or negative) value of x. If no value of x works, 
then we say that  we have gap failure and the message cannot be decrypted as 
easily. For well-chosen parameter  values, this will occur so rarely tha t  it can be 
ignored in practice. 

w W h y  D e c r y p t i o n  W o r k s .  The polynomial a that  Dan computes satis- 
fies 

a=_ f | f | 1 6 2 1 7 4  f |  (mod q) 

= f | 1 6 2 1 7 4 1 7 4  f |  (modq)  

= p r 1 7 4  f |  f r o m ( l ) .  

from (2), 

Consider this last polynomial PC | g + f | m. For appropriate parameter  
choices, we can ensure that  (almost always) all of its coefficients lie between -q/2  
and q/2, so that  it doesn't  change if its coefficients are reduced modulo q. This 
means that  when Dan reduces the coefficients of f | e modulo q into the interval 
from -q /2  to q/2, he recovers exactly the polynomial 

a = p r 1 7 4 1 7 4  in Z[X] / (XN-1) .  

Reducing a modulo p then gives him the polynomial f | m (mod p), and mul- 
tiplication by Fp retrieves the message m (mod p). 

w P a r a m e t e r  S e l e c t i o n  

w N o t a t i o n  a n d  a n o r m  e s t i m a t e .  We define the width of an element 
F E R to be 

[F[o ~ = m a x  { F i ) -  min  { F i } .  
I < i < N  l~_i~_N 

As our notat ion suggests, this is a sort of L ~ norm on R. Similarly, we define a 
centered L 2 norm on R by 

IFI2 = Fi-.~") 2 where /O 1 g , ~ F ~ ~  

(Equivalently, I F I 2 / v ~  is the s tandard deviation of the coefficients of F . )  The 
following proposition was suggested to us by Don Coppersmith. 
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Proposition. For any ~ > 0 there are constants 71,72 > O, depending on 
and N,  such that for randomly chosen polynomials F, G E R, the probability is 
greater than 1 - ~ that they satisfy 

71 IF[2 IG[2 _< IF | G[o o _< 72 IFI2 ]GI2. 

Of course, this proposition would be useless from a practical viewpoint if the 
ratio 72/71 were very large for small e's. However, it turns out that  even for 
moderately large values of N and very small values of e, the constants 7x, 3'2 are 
not at all extreme. We have verified this experimentally for a large number of 
parameter values and have an outline of a theoretical proof. 

w S a m p l e  spaces .  The space of messages s consists of all polynomials 
modulo p. Assuming p is odd, it is most convenient to take 

{ 1 1 } 
s  = m E R : re has coefficients lying between - ~ ( p -  1) and ~ ( p -  1) . 

To describe the other samples spaces, we will use sets of the form 

{ F has dl coefficients equal 1, } 
/:(all,d2) = F G R : d2 coefficients equal -1 ,  the rest 0 " 

With this notation, we choose three positive integers dr, dg, d and set 

L:! = Z:(df,df - 1), s = s and L:r = s 

(The reason we don't  set s = s dl)  is because we want f to be invertible, 
and a polynomial satisfying f(1) = 0 can never be invertible.) Notice that  
f E / : f ,  g E s and r E s162 have L 2 norms 

Ifl2 = ~/2d! - 1 - N -1, Ig]2 = 1r = v ~ .  

Later we will give values for dr, dg, d which allow decryption while maintaining 
various security levels. 

w A D e c r y p t i o n  C r i t e r i o n .  In order for the decryption process to work, 
it is necessary tha t  

] f | 1 6 2 1 7 4  <q. 

We have found that  this will virtually always be true if we choose parameters so 
tha t  

If | m[cr q/4 and IPr |162 < q/4, 

and in view of the above Proposition, this suggests that  we take 

If]2 Im]2 ~ q/472 and 1r [gl2 ~ q/4p72 (3) 

for a 72 corresponding to a small value for ~. For example, experimental evidence 
suggests tha t  for N = 107, N = 167, and N = 503, appropriate values for 72 
are 0.35, 0.27, and 0.17 respectively. 



272 Jeffrey Hoffstein et al 

w Security Analysis 
w B r u t e  force a t tacks .  An attacker can recover the private key by trying 
all possible f E / : f  and testing if f |  (mod q) has small entries, or by trying all 
g E/:g and testing i fg|  -1 (mod q) has small entries. Similarly, an attacker can 
recover a message by trying all possible r E/:r  and testing if e - r | h (mod q) 
has small entries. In practice, s will be smaller than/ :~,  so key security is 
determined by #/:g, and individual message security is determined by #/:~. 
However, as described in the next section, there is a meet-in-the-middle attack 
which (assuming sufficient storage) cuts the search time by the usual square 
root. Hence the security level is given by 

(Key  1 /  N, 
Security] = ~ = ~ V (N - 2dg)I 

(Message~ 1 / N! 

Security] - - ~ - - ~  ( g - 2 d ) I "  

w Mee t - i n - t he -midd l e  a t tacks .  Recall that an encrypted message looks 
like e - r | h + m (mod q). Andrew Odlyzko has pointed out that there is a 
meet-in-the-middle attack which can be used against r and we observe that a 
similar attack applies also to the private key ] .  Briefly, one splits f in half, say 
f = f l  § f2, and then one matches fl  (~ e against - f 2  | e, looking for (fl,  f2) so 
that the corresponding coefficients have approximately the same value. Hence 
in order to obtain a security level of (say) 28~ one must choose f ,  g, and r from 
sets containing around 216~ elements. (For further details, see [13].) 

w Mul t ip l e  t r ansmiss ion  a t tacks .  If Cathy sends a single message m 
several times using the same public key but different random r then the at- 
tacker Betty will be able to recover a large part of the message. Briefly, suppose 
that Cathy transmits ei - r 1 7 4  (mod q) for i = 1,2, . . .  ,r. Betty can then 
compute (ei - el) | h -1 (mod q), thereby recovering r - r (mod q). However, 
the coefficients of the r are so small that she recovers exactly r - r and from 
this she will recover many of the coefficients of r If r is even of moderate size 
(say 4 or 5), Betty will recover enough of r to be able to test all possibilities for 
the remaining coefficients by brute force, thereby recovering m. Thus multiple 
transmission are not advised without some further scrambling of the underly- 
ing message. We do point out that even if Betty decrypts a single message in 
this fashion, this information will not assist her in decrypting any subsequent 
messages. 

w La t t i ce  ba sed  at tacks.  The object of this section is to give a brief 
analysis of the known lattice attacks on both the public key h and the message 
m. We begin with a few words concerning lattice reduction. The goal of lattice 
reduction is to find one or more "small" vectors in a given lattice. In theory, 
the smallest vector can be found by an exhaustive search, but in practice this is 
not possible if the dimension is large. The LLL algorithm of Lenstra-Lenstra- 
Lovs [7], with various improvements due to Schnorr and others, [10, 12, 11] 



NTRU: A Ring-Based Public Key Cryptosystem 273 

will find relatively small vectors in polynomial time, but  even LLL will take a 
long time to find the smallest vector provided that  the smallest vector is not  
too much smaller than the expected length of the smallest vector. We will make 
these observations more precise below. 

w Lattice attack on an N T R U  private key. Consider the 2N-by-2N ma- 
tr ix composed of four N - b y - N  blocks: 

( a 0 . . .  0 
0 a . . .  0 

: ; " . .  

0 0 . . .  
O 0 " ' "  

0 0 . . .  

: : " . .  

0 0 . . .  

a hi  
0 q 
0 0 
: 

0 0 

ho hi  " "  h N - 1  
h N _ l  ho . . .  h N - 2  

: " . .  : 

h2 " "  ho 
O ~ 1 7 6  O 

q --. 0 
: ".. : 

0 --. q 

(Here a is a parameter  to be chosen shortly.) Let L be the lattice generated by 
the rows of this matrix. The determinant of L is q g o ~ N .  

Since the public key is h -- g | f - l ,  the lattice L will contain the vector 
r = ( a f ,  g), by which we mean the 2N vector consisting of the N coefficients of 
f multiplied by a,  followed by the N coefficients of g. By the gaussian heuristic, 
the expected size of the smallest vector in a random lattice of dimension n and 
determinant  D lies between 

D1/'LV ~2~re and D l l n ~  e.  

In our case, n = 2N and D = qN~N,  SO the expected smallest length is larger 
(but not much larger) than 

8_--,~ g ~ .  
V ~-e  

An implementation of a lattice reduction algorithm will have the best chance 
of locating T, or another  vector whose length is close to ~-, if the attacker chooses 
~ to maximize the ratio s/Ir12. Squaring this ratio, we see that  an attacker 
should choose a so as to maximize 

- I J:) 

This is done by choosing a = [g[2 /If[2" (Note that  [g[2 and If[2 are both public 
quantities.) 

When a is chosen in this way, we define a constant Ch by setting [T[2 ----- ChS. 
Thus Ch is the ratio of the length of the target  vector to the length of the expected 
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shortest vector. The  smaller the value of ch, the easier it will be to find the target  
vector. Substi tuting in above, we obtain 

Ifl  Igl: 

For a given pair (f ,  g) used to set up the cryptosystem, Ch may be viewed as a 
measure of how far the associated lattice departs from a random lattice. If Ch is 
close to 1, then L will resemble a random lattice and lattice reduction methods 
will have a hard time finding a short vector in general, and finding T in particular. 
As Ch decreases, lattice reduction algorithms will have an easier time finding T. 
Based on the limited evidence we have obtained, the time required appears to 
be (at least) exponential in N,  with a constant in the exponent proportional to 
Oh. 

w La t t i ce  a t t ack  on an N T R U  message .  A lattice attack may also be 
directed against an individual message m. Here the associated lattice problem 
is very similar to tha t  for h, and the target  vector will have the form (am,  r 
As before, the attacker should balance the lattice using ~ = 1r which 
leads to the value 

 /2=e ImI  Ir 
Cm = " N q  

This constant cm gives a measure of the vulnerability of an individual message 
to a lattice attack, similar to the way Ch does for a lattice attack on h. An 
encrypted message is most vulnerable if Cm is small, and becomes less so as cm 

gets closer to 1. 
In order to make the attacks on h and m equally difficult, we want to take 

cm ~ Ch, or equivalently, Ill2 Igl2 ~ Iml~ 1r For concreteness, we will now 
restrict to  the case tha t  p = 3; other values may be analyzed similarly. F o r p  = 3, 
an average message m will consist of N / 3  each of 1, 0 and - 1 ,  so Iml2 ~ V/2-N-/3. 
Similarly, r consists of d each of 1 and - 1 ,  with the rest O's, so Ir = v f~ -  Thus 
we will want to set 

Jfl  Ig]2 
This can be combined with the decryption criterion (3) to assist in choosing 
parameters.  

w La t t i ce  a t t ack  on a spur ious  key.  Rather  than  trying to find the pri- 
vate key f ,  an attacker might use the lattice described above (in Section 3.4.1) 
and t ry  to find some other short vector in the lattice, say of the form ~.r = 
(~fl,g~). If this vector is short enough, then f~ will act as a decryption key. 
More precisely, if it turns out that  with high probability, 

f ' | 1 6 2 1 7 4  (modq)  

satisfies ]pC | g* + m | f~l~ < q, then decryption will succeed; and even if this 
width is 2q or 3q, it is possible tha t  the message could be recovered via error- 
correcting techniques, especially if several such T~'S could be found. This idea, 
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which is due to Coppersmith and Shamir, is described in [2]. However exper- 
imental evidence suggests that the existence of spurious keys does not pose a 
security threat. See Section 4.2 for a further discussion of this point. 

w P r a c t i c a l  I m p l e m e n t a t i o n s  of  N T R U  

w Specific P a r a m e t e r  Choices. We will now present three distinct sets 
of parameters which yield three different levels of security. The norms of f and 
g have been chosen so that decryption failure occurs with probability less than 
5.10-5(based on extensive computer experimentation). 

Case A: M o d e r a t e  Secur i ty  
The Moderate Security parameters are suitable for situations in which the intrin- 
sic value of any individual message is small, and in which keys will be changed 
with reasonable frequency. Examples might include encrypting of television, 
pager, and cellular telephone transmissions. 

(N,p ,  q) = (107, 3, 64) 

s -- s s = s s162 -- s (i.e., d = 5). 

(In other words, f is chosen with 15 l 's  and 14 - l ' s ,  g is chosen with 12 l 's  and 
12 - l ' s ,  and r is chosen with 5 l 's  and 5 - l ' s . )  These give key sizes 

Private Key = 340 bits and Public Key -- 642 bits, 

and (meet-in-the-middle) security levels 

Key Security -- 250 and Message Security = 226"5. 

(We note again that meet-in-the-middle attacks require large amounts of com- 
puter storage; for straight search brute force attacks, these security levels should 
be squared.) Substituting the above values into the appropriate formulas yields 
lattice values 

Ch---- 0.257, C,~ = 0.258, and s = 0.422q. 

Case B: High Security 
(N ,p ,q )  -- (167,3,128) 

s -- s s = s s162 = s 18) (i.e., d--- 18) 

Private Key = 530 bits and Public Key = 1169 bits 

Key Security = 2 s2'9 and Message Security = 277.5 

Ch = 0.236, cm = 0.225, and s = 0.296q. 
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C a s e  C: H i g h e s t  Secur i ty  

( N , p ,  q) = (503, 3,256) 

s  = s s = s s162 = s (i.e., d = 55) 

Private Key -- 1595 bits and Public Key -- 4024 bits 

Key Security = 22s5 and Message Security = 217~ 

Ch = 0.182, Cm = 0.160, and s---- 0.0.365q. 

w Lat t i ce  A t t a c k s  - -  E x p e r i m e n t a l  E v i d e n c e .  In this section we de- 
scribe our preliminary analysis of the security of the NTRU Public Key Cryp- 
tosystem from attacks using lattice reduction methods. It is based on experi- 
ments which were performed using version 1.7 of Victor Shoup's implementation 
of the Schnorr,Euchner and Hoerner improvements of the LLL algorithm, dis- 
tributed in his NTL package at ht tp: / /www, cs.  wisc. e d u / - s h o u p / n t l / .  The 
NTL package was run on a 200 M Hz Pentium Pro with a Linux operating 
system. 

This algorithm has several parameters that can be adjusted to give varying 
types of results. In general the LLL algorithm can be tuned to either find a 
somewhat short point in a small amount of time or a very short point in a 
longer time. The key quantity is the constant Ch (or Cm) described above. It 
is somewhat easier to decrypt messages if these constants are small, somewhat 
harder if they are close to 1. The idea is to choose a compromise value which 
makes decryption easy, while still making it difficult for LLL to work effectively. 

The following tables give the time required for LLL to find either the target 
(a f ,  g) or a closely related vector in the lattice L of 3.4.1 for various choices of 
q, Ch and dimension N. As will be elaborated on further in the Appendix, the 
algorithm seems to find either a vector of the correct length, or one considerably 
too long to be useful for decryption. Even if it were to find a spurious key 
of length somewhat longer than the target, as discussed by Coppersmith and 
Shamir in [2], it appears that the time required to find such a key would not be 
significantly less than that required to find the true target. 

We have chosen parameters so that Cm ~ Ch. (So the time required to break 
an individual message should be on the same order as the time required to break 
the public key). In all cases we found that when N gets sufficiently large the 
algorithm fails to terminate, probably because of accumulated round off errors. 
The tables end roughly at this point. 

In this version of LLL there are three parameters that can be fine tuned to 
optimize an attack. The tables give typical running times to break a key pair for 
the most optimal choices of parameters we have found to date. The two columns 
give results for two different floating point versions of the program, QP1 offering 
higher precision. We then use this information to extrapolate running times for 
larger values of N, assuming the algorithm were to terminate. 
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F P  QP1 

Case A 
q--64 

c=0.26 

N time (secs) 

75 561 
80 1493 
85 2832 
90 4435 
92 7440 
94 12908 
96 28534 
98 129938 

N time (secs) 

75 1604 
80 3406 
85 5168 
88 11298 
90 16102 
95 62321 
96 80045 
98 374034 
100 183307 

Case B 
q=128 
c=0.23 

N time (secs) 

75 600 
80 953 
85 1127 
90 3816 
95 13588 

N time (secs) 

75 3026 
80 5452 
85 8171 
90 20195 
95 57087 
100 109706 

Case C 
q=256 
c=0.18 

N 

75 
80 
85 
90 
95 
100 
102 

time (secs) 

547 
765 
1651 
2414 
2934 
7471 
8648 

N time (secs) 

75 2293 
78 3513 
81 3453 
84 5061 
87 6685 
90 9753 
93 16946 
96 19854 
99 30014 
102 51207 
105 75860 
108 145834 

We will write t(N) for the time in seconds necessary to break a public key cor- 
responding to a parameter N. When we graph log t(N) against N, the examples 
we have done seem to indicate that the graph has a positive slope with a small 
positive concavity. This would indicate that t(N) grows at least exponentially 
with N, and possibly even with N log N. To extrapolate out to higher values 
of N, we have taken the information we have and approximated a lower bound 
for the slope of log t(N) against N. This gives the following rough estimates for 
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t(N) in seconds using FP: 

t(N) > 12908 exp[(0.396)(N - 94)] 

t(N) > 13588exp[(0.291)(N - 95)] 

t(N) > 2414exp[(0.10)(N - 92)] 

(Moderate Security) 

(High Security) 

(Highest Security) 

The running times for QP1 are longer for small N, but yield a better exponential 
constant, so for QP1 we obtain: 

t(N) > 80045 exp[(0.207)(N - 96)] 

t(N) > 8171 exp[(0.17315)(N - 85)] 

t(N) > 30014 exp[(0.17564)(N - 99)] 

(Moderate Security) 

(High Security) 

(Highest Security) 

These lower bounds yield the following estimates for the time necessary to break 
the different levels of NTRU security using QP1 running on one 200 MHz Pen- 
tium Pro: 

Type Level q c N 

QP1 Moderate 64 0.26 107 

QP1 High 128 0.23 

QP1 Highest 256 0.18 

Time (seconds) 

780,230 (9 days) 

167 1.198- 10 l~ (380 years) 

503 1.969- 1038 (6.2.1027 years) 

A more detailed analysis and description of the lattice experiments is given 
in the Appendix. 

w A d d i t i o n a l  Topics  

w Improv ing  Message Expansion.  The NTRU PKCS's for the sample 
parameters presented in Section 4.1 have moderate message expansions. How- 
ever, as the principal use for PKCS's is the exchange of a private key in a single 
message block this is not a significant problem. It may be worth mentioning, 
though, that there is a simple way that the NTRU technique can be used to 
convey a very long message, with an expansion of only 1-1 after the first mesage 
block. 

With this approach, the first encrypted message el that Cathy sends is de- 
crypted as a sequence of l's, O's and - l ' s  (taking p = 3) and interpreted as a r 
for the next message block. The next encrypted message block is r | el + ml, 
where ml is the first block of the actual message. As Dan knows r he can 
recover ml mod q exactly. The next encrypted message block Cathy sends is 
e2 = r174 +m2, where Cathy derived r from ml by squaring ml and reducing 
it mod 3. Dan can now recover r as he knows ml, and hence can derive m2 
mod q from e2. This can continue for a message of arbitrary length. 

w Theore t i ca l  Opera t ing  Specifications.  In this section we consider 
the theoretical operating characteristics of the NTRU PKCS. There are three 



NTRU: A Ring-Based Public Key Cryptosystem 279 

integer parameters (N, p, q), four sets s  s162 determined respectively by 
integers d f , d g , d , p  as described in Sections 1.1 and 2.2. The following table 
summarizes the NTRU PKCS operating characteristics in terms of these param- 
eters. 

Plain Text Block N log 2 p bits 

Encrypted Text Block N log 2 q bits 

Encryption Speed* O ( N  2) operations 

Decryption Speed O ( N  2) operations 

Message Expansion logp q-to-1 

Private Key Length 2N log 2 p bits 

Public Key Length N log 2 q bits 
* Prec ise ly ,  4 N  2 w i d i t i o n s  a n d  N divis ions  by q with  remainder 

w Other Implementation Considerations. We briefly mention some 
additional factors which should be considered when implementing NTRU. 

(1) It is important that gcd(q, p) = 1. Although in principle NTRU will work 
without this requirement, in practice having gcd(q,p) > 1 will decrease 
security. At the extreme range, if Plq, then the encrypted message e 
satisfies e - m (mod p), so it is completely insecure. 

(2) We want most f ' s  to have inverses modulo p and modulo q, since other- 
wise it will be hard to create keys. A first necessary requirement is that 
gcd(f(1) ,pq)  = 1, but if this fails for some chosen f ,  the code creator 
can instead use, say, . f (X) + 1 or . f (X) - 1. Assuming gcd(.f(1),pq) = 1, 
virtually all f ' s  will have the required inverses if we take N to be a prime 
and require that for each prime P dividing p and q, the order of P in 
(Z/NZ)* is large, say either N - 1 or (N - 1)/2. For example, this will 
certainly be true if (N - 1)/2 is itself prime (i.e., N is a Sophie Germaln 
prime). Examples of such primes include 107, 167 and 503. 

w Comparison With  Other PK CS ' s .  There are currently a number 
of public key cryptosystems in the literature, including the system of Rivest, 
Shamir, and Adelman (RSA [9]) based on the difficulty of factoring, the system of 
McEliece [8] based on error correcting codes, and the recent system of Goldreich, 
Goldwasser, and Halevi (GGH [4]) based on the difficulty of finding short almost- 
orthogonalized bases in a lattice. 

The NTRU system has some features in common with McEliece's system, 
in that | in the ring R can be formulated as multiplication of 
matrices (of a special kind), and then encryption in both systems can be written 
as a matrix multiplication E = A X  + Y ,  where A is the public key. A minor 
difference between the two systems is that for an NTRU encryption, Y is the 
message and X is a random vector, while the McEliece system reverses these 
assignments. But the real difference is the underlying trap-door which allows 
decryption. For the McEUece system, the matrix A is associated to an error 
correcting (Goppa) code, and decryption works because the random contribution 
is small enough to be "corrected" by the Goppa code. For NTRU, the matrix A 
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is a circulant matrix, and decryption depends on the decomposition of A into 
a product of two matrices having a special form, together with a lifting from 
mod q to mod p. 

As far as we can tell, the NTRU system has little in common with the RSA 
system. Similarly, although the NTRU system must be set up to prevent lattice 
reduction attacks, its underlying decryption method is very different from the 
GGH system, in which decryption is based on knowledge of short lattice bases. 
In this aspect, GGH actually resembles the McEliece system, since in both cases 
decryption is performed by recognizing and eliminating a small random contri- 
bution. Contrasting this, NTRU eliminates a much larger random contribution 
via divisibility (i.e., congruence) considerations. 

The following table compares some of the theoretical operating characteris- 
tics of the RSA, McEliece, GGH, and NTRU cryptosystems. In each case the 
number N represents a natural security/message length parameter. 

Encryption Speed (1,2) 

Decryption Speed (3) 

Public Key 

Private Key 

Message Expansion (4) 

NTRU 

N 2 

N 2 

N 

N 

varies 

RSA 

N 2 

N 3 

N 

N 

1-1 

McEliece 

N 2 

N 2 

N 2 

N 2 

2-1 

GGH 

N 2 

N 2 

N 2 

N 2 

1-1 

(1) NTRU encryption requires only addit ions and shifts, no other mult ipl icat ions 
(2) RSA encryption is O(N a) unless small eneryption exponents are used. 
(a) Asymptotical ly,  NTRU encryption and decryption are O(N log N) using FFT. 
(4) For NTRU, see Section 5.1. 

We have made some preliminary timing comparisons between NTRU and 
RSA, using information available from RSA's web page. The NTRU program 
we used was written in C and not optimized for speed. 

The main uses to which PKCS's are applied are the exchange of secret keys 
and short messages. Also, RSA, ECC and NTRU all work in units of "message 
blocks," and any message block in any of these systems is large enough to hold 
a secret key of very high security, or a short message. Thus for comparison 
purposes, in the following we interpreted a key encryption or decryption in a 
PKCS to be the process of encrypting or decrypting one message block. Numbers 
given for encryption and decryption are message blocks processed per second. 

The information is summarized in the following tables: 

Security Encrypt Decrypt Create 
Level (blks/sec) (blks/sec) key (sec) 

Moderate 1818 505 0.1080 

High 649 164 0.1555 

Highest 103 19 0.8571 

NTRU:  75 MHz Pent ium,  running MSDOS 



NTRU: A Ring-Based Public Key Cryptosystem 281 

Security 
Level 

Moderate 

High 

Highest 

Encrypt Decrypt Create 
(blks/sec) (blks/sec) key (sec) 

16666 2273 0.0079 

4762 

730 

724 

79 

0.0184 

0.1528 

NTRU: 200 MHz Pentium Pro, running Linux 

RSA: 255 MHz Digital AlphaStation 

Comparing NTRU and RSA on the Pentium 75 and 90 platforms, adjusting 
for clock speed, and comparing the moderate NTRU security level to 512 bit RSA 
security level, we find that NTRU is 5.9 times faster at encryption, 14.4 times 
faster at decryption and 5.0 times faster at key creation. Similarly comparing 
the highest NTRU security level to the 1024 bit RSA security level, NTRU is the 
same speed at encryption, 3.2 times faster at decryption, and 5.3 times faster at 
key creation. 

The 200 MHz Pentium pro and the 256 MHz Digital Alpha are sufficiently 
different that there is no obvious way to precisely compare one to the other. But 
simply comparing the raw numbers it is interesting to note that in spite of the 
slower clock speed, NTRU comes out 16, 18 and 33 times faster at encryption, 
decryption and key creation at moderate security, and 2, 3 and 8 times faster at 
high security. 

For related timings of ECC, we refer to Certicom's published report: "Certi- 
com Releases Security Builder 1.2 Performance Data" According to their report 
(available at http://www.certicom.com/secureb.htm), on a Pentium platform 
ECC takes 4.57 times as long as RSA to encrypt a message block, and 0.267 
times as long to decrypt a message block. Thus compared to RSA, ECC wins by 
a factor of about 4 when decrypting, but loses by a factor of 4 when encrypting. 
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Security Encrypt Decrypt Create 
Level (blks/sec) (blks/sec) key (sec) 

512 bit 370 42 0.45 
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1024 bit 116 7 3.8 

RSA: 90MHz Pentium 
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Level (blks/sec) (blks/sec) key (sec) 
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768 bit 588 42 0.59 

1024 bit 385 23 1.28 
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w Appendix - Some remarks on the impementat ion 
of the Schnorr-Euchner improvements of LLL 

The LLL algorithm produces, from a given basis for a lattice, a reduced basis 
whose first vector is guaranteed to be relatively short. Part of this procedure 
involves minimizing the length of linear combinations of basis vectors, taking 
"blocks" of two at a time. If one minimized the length of linear combinations of 
basis vectors, taking as a block the entire basis, then an actual shortest vector 
could be found, but the time to produce it would be exponential in the dimension. 
One of Schnorr and Euchner's improvements (see [10, 11, 12] was to add an 
extra degree of flexibility. They minimize over blocks of vectors of size greater 
than two, but less than the dimension. This results in shorter vectors than are 
generally found by the original LLL algorithm, i.e with block size equal 2, but 
causes an increase in running time which is exponential in the block size. 

In NTL 1.7 the blocksize ~ can be chosen, as well as a second parameter p 
which Schnorr and Hoerner introduced. This is intended to moderate the in- 
crease in running time as ~ increases. The "pruning" parameter p halts the 
minimization process when the probability of finding a shorter vector than al- 
ready found within a given block falls below a prescribed value which depends on 
p. This probability is computed via the gaussian volume heuristic, the validity 
of which depends on the randomness of the lattice. 

There is a third parameter ~ which is allowed to vary between 0.5 and 1.0. 
This parameter determines how frequently a certain recursive operation is per- 
formed. The program recommends setting ~ = .99, and we have followed this 
recommendation. 

In our experiments we varied the choice of Ch and of the blocksize ~ and 
pruning factor p. We never observed, even for larger values of ~, a noticeable 
improvement from the pruning procedure and finally set p = 0, so the pruning 
procedure was not called. 

The following tables give a more complete set of information which includes 
the choice of ~ and the ratio of the smallest vector found to the target vector. 
We observed that for small values of ~ the algorithm would fail to find a vector 
useful for decryption. In fact it would most likely produce a q-vector, that is to 
say a vector with a single coordinate equal to q and the rest all zero. The initial 
basis for L contains N of these vectors, which are in fact not much longer than 
the length s = ~ ] v e  of the shortest expected vector. As ~ increased, the 
smallest vector found would continue to be a q-vector until a certain threshold 
was passed, which depended on N and Ch. (Increasing with N, decreasing with 
Ch). After this threshold, if the algorithm terminated it would usually succeed 
in finding the target vector. On some occasions it would find a vector slightly 
smaller than a q-vector and then at the next blocksize succeed in finding the 
target. The general pattern is that for fixed Ch the blocksize would have to 
increase with N in order for the algorithm to succeed in finding the target. At 
slightly smaller blocksizes the time required would be on the same order as the 
time required to find the target but the vector found - -  either the q-vector or 
slightly smaller - -  would be useless for decryption purposes. 
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In Table 1 timings are given for a lattice corresponding to Ch = 0.26 with 
I/J2 = [g[2- This is the equivalent to the moderate security lattice attack, but 
the balancing of f and g makes it possible to work with smaller integers and 
the NTL program runs, with some exceptions, more efficiently. Notice that  
the necessary blocksize increases monotonically with N. In the Tables 2, 3 
and 4, timings are given for moderate, high and highest security. These are 
again formed with If[2 = [912, and the moderate security table is a repeat to 
give some idea of the variation that  occurs. Finally, Table 5 is formed with 
[f[2 and [g[2 taking the same ratio as in the actual encryption procedure. The 
a = 0.9097 indicates that  the lattice has been balanced to optimize the chances of 
an attacker. Note that  the times are roughly the same as the equivalent situation 
in Tables 1 and 2, but timing deteriorates very substantially at N = 98. Notice 
some curiously short timings at N = 90 in Tables 2 and 5. These occurred when 
the algorithm terminated after locating a particular short vector: (if,  f f  | h), 
with f '  = ( 1 , - 1 , 1 , - 1 , 1 , . . . ) .  The value of f '  | h is then ( k , - k , k , . . . ) ,  for 
some k, with k taking the value 1 or - 1  with probability 2/q. If this happens, 
(if,  f f  | h) is short, but as ff  is highly non-invertible it is useless for decryption 
purposes. 
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N 

75 
8O 
8O 
8O 
8O 
85 
85 
85 
85 
85 
85 
90 
90 
90 
90 
90 
90 
90 
90 
95 
95 
95 
95 
95 
95 
95 
95 
95 
95 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

Tab l e  

Block 
size 

6 
4 
6 
8 
10 
4 
6 
8 
10 
12 
14 
4 
6 
8 
10 
12 
14 
16 
18 
4 
6 
8 
10 
12 
14 
16 
18 
2O 
22 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 

1: BKZ-C 

Running 
time (sec) 

1910 
1823 
2731 
3285 
3663 
2091 
3661 
5012 
5497 
7438 
7433 
3382 
3305 
5910 
7173 
7367 

12182 
16102 
18920 
3019 
4434 
7707 
9449 
11308 
14520 
22348 
23965 
81028 
62321 
4020 
6307 
9225 
11109 
13381 
19096 
23850 
40670 
72130 

444773 

Actual 
Total 
Norm 

6.32 
6.48 
6.78 
6.48 
6.63 
6.93 
6.78 
6.93 
6.78 
6.93 
7.07 
6.93 
6.78 
6.78 
6.78 
6.78 
6.93 
6.78 
6.93 
7.21 
7.07 
7.07 
7.35 
7.21 
7.21 
7.O7 
7.21 
7.07 
7.35 
7.21 
7.07 
7.07 
7.07 
7.07 
7.21 
7.07 
7.21 
7.21 
7.21 

Smallest 
Norm 
Found 

6.32 
64.00 
64.00 
64.00 
6.63 

64.00 
64.00 
64.00 
64.00 
64.00 
7.07 

64.00 
64.00 
64.00 
64.00 
64.00 
64.00 
6.78 
6.93 
64.00 
64.00 
64.00 
64.00 
64.00 
64.00 
64.00 
64.00 
64.00 
7.35 

64.00 
64.00 
64.00 
64.00 
64.00 
64.00 
64.00 
50.99 
64.00 
7.21 

Ratio of 
found to 

actual 

1.0 
9.9 
9.4 
9.9 
1.0 
9.2 
9.4 
9.2 
9.4 
9.2 
1.0 
9.2 
9.4 
9.4 
9.4 
9.4 
9.2 
1.0 
1.0 
8.9 
9.1 
9.1 
8.7 
8.9 
8.9 
9.1 
8.9 
9.1 
1.0 
8.9 
9.1 
9.1 
9.1 
9.1 
8.9 
9.1 
7.1 
8.9 
1.0 

P1 w i t h  Q = 64, c = 0,26, 5 = 0.99, a n d  p r u n e  = 0 
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N Block 
size 

75 4 
75 6 
80 6 
80 8 
85 8 
85 10 
85 12 
85 14 
85 16 
88 16 
90 16 
90 18 
95 18 
95 19 
95 20 
96 20 
98 20 
98 22 
100 22 

2 h b l e  2: B K Z - (  

N Block 
size 

75 2 
75 4 
75 6 
75 8 
8O 8 
80 10 
85 10 
85 12 
90 12 
90 14 
90 16 
95 16 
95 18 
95 20 
100 20 

Running 
t ime (sec) 

Actual  
Total  
Norm 

Smallest 
Norm 
Found 

1797 
1604 
2776 
3406 
4614 
5898 
7536 
8106 
5168 
11298 
12987 

2 
25908 
36754 
59664 
80045 
75365 

374034 
183307 

6.16 
6.48 
6.78 
6.63 
6.93 
6.78 
6.93 
7.21 
6.78 
6.93 
6.93 
6.78 
7.21 
7.21 
7.21 
7.07 
7.21 
7.07 
7.07 

64.00 
6.48 

64.00 
6.63 

64.00 
64.00 
64.00 
64.00 
6.78 
6.93 

64.00 
13.42 
64.00 
64.00 
64.00 
7.07 

64.00 
7.07 
7.07 

Ratio of 
found to 

actual  

10.4 
1.0 
9.4 
1.0 
9.2 
9.4 
9.2 
8.9 
1.0 
1.0 
9.2 
2.0 
8.9 
8.9 
8.9 
1.0 
8.9 
1.0 
1.0 

P 1  w i t h  Q = 64, c = 0.26, ~ = 0.99 

Actual  
Total  
Norm 

Smallest 
Norm 
Found 

Running 
t ime (see) 

1067 
2699 
3244 
3026 
6022 
5452 
10689 
8171 
15304 
17802 
20195 
31338 
54490 
57087 
109706 

8.00 
8.00 
8.12 
7.87 
8.37 
8.12 
8.37 
8.37 
8.60 
8.83 
8.60 
9.17 
8.94 
8.83 
9.17 

128.00 
121.90 
121.04 

7.87 
124.54 
8.12 

124.26 
8.37 

128.00 
126.60 

8.60 
128.00 
128.00 
8.83 
9.17 

a n d  p r u n e  = 0 

Ratio of 
found to 

actual  

16.0 
15.2 
14.9 
1.0 

14.9 
1.0 

14.9 
1.0 

14.9 
14.3 
1.0 

14.0 
14.3 
1.0 
1.0 

T a b l e  3 : B K Z - Q P 1  w i t h  Q = 128, c = 0.23, 5 = 0.99, a n d  p r u n e  = 0 
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N Block 
size 

75 4 
75 20 
78 4 
81 4 
81 6 
84 6 
87 6 
9O 6 
90 8 
93 8 
93 10 
93 12 
96 12 
96 14 
99 14 
102 14 
102 16 
102 18 
105 18 
105 20 
108 2O 
108 22 

Running 
time (sec) 

2293 
1930 
3513 
3422 
3453 
5061 
6685 
7085 
9753 
11900 
14671 
16946 
22684 
19854 
30014 
30817 
64718 
51207 
81336 
75860 
197697 
145834 

Actual 
Total 
Norm 

Smallest 
Norm 
Found 

8.60 
8.72 
8.94 
9.38 
9.17 
9.17 
9.38 
9.49 
9.59 
9.90 
9.80 
9.70 
9.80 
9.90 
10.00 
10.20 
10.39 
10.39 
10.58 
10.30 
10.30 
10.30 

8.60 
8.72 
12.25 

221.22 
9.17 
9.17 
9.38 

256.00 
9.59 

254.55 
237.58 
9.70 

231.59 
9.90 
10.00 

239.62 
223.64 
10.39 

244.38 
10.30 

255.87 
10.30 

Ratio of 
found to 

actual 

1.0 
1.0 
1.4 

23.6 
1.0 
1.0 
1.0 

27.0 
1.0 

25.7 
24.2 
1.0 

23.6 
1.0 
1.0 

23.5 
21.5 
1.0 

23.1 
1.0 

24.9 
1.0 

Table  4 : B K Z - Q P 1  wi th  Q = 256, c = 0.18, 5 = 0.99, and  p r u n e  = 0 
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N Block 
size 

75 2 
75 4 
75 6 
80 6 
85 6 
85 8 
85 10 
85 12 
85 14 
85 16 
85 18 
90 18 
95 18 
95 20 
95 22 
96 22 
96 24 
98 24 

Running 
time (sec) 

808 
1895 
2363 
3582 
5412 
7252 
8633 
10074 
12371 
17729 
16095 

4 
37998 
43108 
200195 
240563 
68054 

1369730 

Actual 
Total 
Norm 

6000.00 
6000.00 
6000.00 
6164.41 
6324.56 
6324.56 
6324.56 
6324.56 
6324.56 
6324.56 
6324.56 
6480.74 
6633.25 
6633.25 
6633.25 
6633.25 
6633.25 
6782.33 

Smallest 
Norm 
Found 

64000.0 
64000.0 
7857.87 
6164.78 
64000.0 
64000.0 
64000.0 
64000.0 
64OOO.O 
64000.0 
6630.40 
12820.5 
64000.0 
64000.0 
69O0.34 
64O00.0 
6779.54 
6852.89 

Ratio of 
found to 

actual 

10.7 
10.7 
1.3 
1.0 

10.1 
10.1 
10.1 
10.1 
10.1 
10.1 
1.0 
2.0 
9.6 
9.6 
1.0 
9.6 
1.0 
1.0 

Table 5:BKZ-_QP1 wi th  Q = 64, c = 0.26, 
= 0.9097, ~ = 0.99, and  p r u n e  = 0 
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