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[57] ABSTRACT

The public key encryption system of the present invention
has short and easily created encryption keys and wherein the
encoding and decoding processes are performed extremely
rapidly, and has low memory requirements. The encoding
and decoding processes use both the addition and multipli-
cation operations in a ring modulo with two different ideals.
The cryptosystem of the present invention allows encryption
keys to be chosen essentially at random from a large set of
binary vectors, for which key lengths are comparable to the
key lengths of the most widely used prior art cryptosystems.
The present invention features an appropriate security level
(~2%), with encoding and decoding processes ranging from
approximately one to two orders of magnitude faster than
the prior art, particularly the exponentiation cryptosystems.
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PUBLIC KEY CRYPTOSYSTEM METHOD
AND APPARATUS

RELATED APPLICATION

This application claims priority from U.S. Provisional
Patent Application Ser. No. 60/024,133, filed Aug. 19, 1996,
and said Provisional Patent Application is incorporated
herein by reference.

FIELD OF THE INVENTION

This invention relates to encoding and decoding of infor-
mation and, more particularly, to a public key cryptosystem
for encryption and decryption of digital messages by pro-
Cessor systems.

BACKGROUND OF THE INVENTION

Secure exchange of data between two parties, for
example, between two computers, requires encryption.
There are two general methods of encryption in use today,
private key encryption and public key encryption. In private
key encryption, the two parties privately exchange the keys
to be used for encoding and decoding. A widely used
example of a private key cryptosystem is DES, the Data
Encryption Standard. Such systems can be very fast and very
secure, but they suffer the disadvantage that the two parties
must exchange their keys privately.

A public key cryptosystem is one in which each party can
publish their encoding process without compromising the
security of the decoding process. The encoding process is
popularly called a trap-door function. Public key
cryptosystems, although generally slower than private key
cryptosystems, are used for transmitting small amounts of
data, such as credit card numbers, and also to transmit a
private key which is then used for private key encoding.

Heretofore a variety of trap-door functions have been
proposed and implemented for public key cryptosystems.

One type of trap-door function which has been used to
create public key cryptosystems involves exponentiation in
a group; that is, taking an element of a group and repeatedly
multiplying the element by itself using the group operation.
The group most often chosen is the multiplicative group
modulo pq for large prime numbers p and g, although other
groups such as elliptic curves, abelian varieties, and even
non-commutative matrix groups, have been described.
However, this type of trap-door function requires large
prime numbers, on the order of 100 digits each, making key
creation cumbersome; and the exponentiation process used
for encoding and decoding is computationally intensive,
requiring many multiplications of hundred digit numbers
and on the order of N> operations to encode or decode a
message consisting of N bits.

A second type of trap-door function which has been used
to create public key cryptosystems is based on the difficulty
of determining which numbers are squares in a group,
usually the multiplicative group modulo pq for large primes
p and q. Just as in the first type, key creation is cumbersome
and encoding and decoding are computationally intensive,
requiring on the order of N> operations to encode or decode
a message consisting of N bits.

A third type of trap-door function involves the discrete
logarithm problem in a group, generally the multiplicative
group or an elliptic curve modulo a large prime p. Again, key
creation is cumbersome, since the prime p needs at least 150
digits and p-1 must have a large prime factor; and such
systems use exponentiation, so again require on the order of
N? operations to encode or decode a message consisting of
N bits.
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A fourth type of trap-door function which has been used
to create public key cryptosystems is based on the knapsack,
or subset sum, problem. These functions use a semigroup,
normally the semigroup of positive integers under addition.
Many public key cryptosystems of this type have been
broken using lattice reduction techniques, so they are no
longer considered secure systems.

A fifth type of trap-door function which has been used to
create public key cryptosystems is based on error correcting
codes, especially Goppa codes. These cryptosystems use
linear algebra over a finite field, generally the field with two
elements. There are linear algebra attacks on these
cryptosystems, so the key for a secure cryptosystem is a
large rectangular matrix, on the order of 400,000 bits. This
is too large for most applications.

A sixth type of trap-door function which has been used to
create public key cryptosystems is based on the difficulty of
finding extremely short basis vectors in a lattice of large
dimension N. The keys for such a system have length on the
order of N? bits, which is too large for many applications. In
addition, these lattice reduction public key cryptosystems
are very new, so their security has not yet been fully
analyzed.

Most users, therefore, would find it desirable to have a
public key cryptosystem which combines relatively short,
easily created keys with relatively high speed encoding and
decoding processes.

It is among the objects of the invention to provide a public
key encryption system for which keys are relatively short
and easily created and for which the encoding and decoding
processes can be performed rapidly. It is also among the
objects hereof to provide a public key encryption system
which has relatively low memory requirements and which
depends on a variety of parameters that permit substantial
flexibility in balancing security level, key length, encoding
and decoding speed, memory requirements, and bandwidth.

SUMMARY OF THE INVENTION

The invention allows keys to be chosen essentially at
random from a large set of vectors, with key lengths
comparable to the key lengths in other common public key
cryptosystems, and features an appropriate (e.g. ~2%° for
current circumstances) security level, and provides encoding
and decoding processes which are between one and two
orders of magnitude faster than the most widely used public
key cryptosystem, namely the exponentiation cryptosystem
referenced above.

The encoding technique of an embodiment of the public
key cryptosystem hereof uses a mixing system based on
polynomial algebra and reduction modulo two numbers, p
and g, while the decoding technique uses an unmixing
system whose validity depends on elementary probability
theory. The security of the public key cryptosystem hereof
comes from the interaction of the polynomial mixing system
with the independence of reduction modulo p and q. Security
also relies on the experimentally observed fact that for most
lattices, it is very difficult to find the shortest vector if there
are a large number of vectors which are only moderately
longer than the shortest vector.

An embodiment of the invention is in the form of a
method for encoding and decoding a digital message m,
comprising the following steps: selecting ideals p and q of
a ring R; generating elements f and g of the ring R, and
generating element F, which is an inverse of f (mod q), and
generating element F, which is an inverse of f (mod p);
producing a public key that includes h, where h is congruent,
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mod g, to a product that can be derived using g and F;
producing a private key from which f and F,, can be derived;
producing an encoded message ¢ by encoding the message
m using the public key and a random element C1; and
producing a decoded message by decoding the encoded
message ¢ using the private key.

Further features and advantages of the invention will
become more readily apparent from the following detailed
description when taken in conjunction with the accompa-
nying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system that can be used in
practicing embodiments of the invention.

FIG. 2 is a flow diagram of a public key encryption system
which, when taken with the subsidiary flow diagrams
referred to therein, can be used in implementing embodi-
ments of the invention.

FIG. 3 is a flow diagram of a routine, in accordance with
an embodiment of the invention, for generating public and
private keys.

FIG. 4 is a flow diagram in accordance with an embodi-
ment of the invention, for encoding a message using a public
key.

FIG. § is a flow diagram in accordance with an embodi-
ment of the invention, for decoding an encoded message
using a private key.

FIG. 6 is a flow diagram of a routine, in accordance with
another embodiment of the invention, for generating public
and private keys.

FIG. 7 is a flow diagram in accordance with another
embodiment of the invention, for encoding a message using
a public key.

FIG. 8 is a flow diagram in accordance with another
embodiment of the invention, for decoding an encoded
message using a private key.

DETAILED DESCRIPTION

FIG. 1 is a block diagram of a system that can be used in
practicing embodiments of the invention. Two processor-
based subsystems 105 and 155 are shown as being in
communication over an insecure channel 50, which may be,
for example, any wired or wireless communication channel
such as a telephone or internet communication channel. The
subsystem 105 includes processor 110 and the subsystem
155 includes processor 160. When programmed in the
manner to be described, the processors 110 and 160 and their
associated circuits can be used to implement an embodiment
of the invention and to practice an embodiment of the
method of the invention. The processors 110 and 160 may
each be any suitable processor, for example an electronic
digital processor or microprocessor. It will be understood
that any general purpose or special purpose processor, or
other machine or circuitry that can perform the functions
described herein, electronically, optically, or by other means,
can be utilized. The processors may be, for example, Intel
Pentium processors. The subsystem 105 will typically
include memories 123, clock and timing circuitry 121,
input/output functions 118 and monitor 125, which may all
be of conventional types. Inputs can include a keyboard
input as represented at 103. Communication is via trans-
ceiver 135, which may comprise a modem or any suitable
device for communicating signals.

The subsystem 155 in this illustrative embodiment can
have a similar configuration to that of subsystem 105. The
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processor 160 has associated input/output circuitry 164,
memories 168, clock and timing circuitry 173, and a monitor
176. Inputs include a keyboard 155. Communication of
subsystem 155 with the outside world is via transceiver 162
which, again, may comprise a modem or any suitable device
for communicating signals.

The encoding technique of an embodiment of the public
key cryptosystem hereof uses a mixing system based on
polynomial algebra and reduction modulo two numbers, p
and g, while the decoding technique uses an unmixing
system whose validity depends on elementary probability
theory. [It will be understood that the polynomial is a
convenient representation of ordered coefficients (a polyno-
mial of degree N-1 a having N ordered coefficients, some of
which may be zero), and that the processor will perform
designated operations on coefficients.] The security of the
public key cryptosystem hereof comes from the interaction
of the polynomial mixing system with the independence of
reduction modulo p and q. Security also relies on the
experimentally observed fact that for most lattices, it is very
difficult to find the shortest vector if there are a large number
of vectors which are only moderately longer than the short-
est vector.

The cryptosystem hereof fits into the general framework
of a probabilistic cryptosystem as described in M. Blum et
al., “An Efficient Probabilistic Public-Key Encryption
Scheme Which Hides All Partial Information”, Advances in
Cryptology: Proceedings of CRYPTO 84, Lecture Notes in
Computer Science, Vol. 196, Springer-Verlag, 1985, pp.
289-299; and S. Goldwasser et al., “Probabilistic
Encryption”, J. Computer and Systems Science 28 (1984),
270-299. This means that encryption includes a random
element, so each message has many possible encryptions.
Encoding and decoding and key creation are relatively fast
and easy using the technique hereof, in which it takes O(N?)
operations to encode or decode a message block of length N,
making it considerably faster than the O(N®) operations
required by RSA. Key lengths are O(N), which compares
well with the O(N?) key lengths required by other “fast”
public keys systems such as those described in R. J.
McEliece, “A Public-Key Cryptosystem Based On Alge-
braic Coding Theory”, JPL Pasadena, DSN Progress Reports
42-44 (1978), 114-116 and O. Goldreich et al. “Public-Key
Cryptosystems From Lattice Reduction Problems”, MIT—
Laboratory for Computer Science preprint, November 1996.

An embodiment of the cryptosystem hereof depends on
four integer parameters (N,K,p,q) and three sets L, L, L,
of polynomials of degree N-1 with integer coefficients. This
embodiment works in the ring R=Z[X]/(X"-1). An element
F € R will be written as a polynomial or a vector,

N
F=Y F"7 =[F, Fay oo Fyl.
i=1

The star “*” denotes multiplication in R. This star multipli-
cation is given explicitly as a cyclic convolution product,
F*G=H with

2

i+ j=k(mod N

1 N
H; :ZlﬂGk—i+ZRGN+k—i = FiG;.
= =

When a multiplication modulo (say) q is performed, the
coefficients are reduced modulo q. Further reference can be
made to Appendix 1.
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The following is an example of an embodiment in accor-
dance with the invention of a public key cryptosystem. Very
small numbers are used for ease of illustration, so the
example would not be cryptographically secure. In conjunc-
tion with the example there is described, as material in
double brackets ([ ]) operating parameters that would pro-
vide a practical cryptographically secure cryptosystem
under current conditions. Further discussion of the operating
parameters to achieve a particular level of security is set
forth in Appendix 1, which also describes the degree of
immunity of an embodiment of the cryptosystem hereof to
various types of attack.

The objects used in an embodiment hereof are polyno-
mials of degree N-1,

axM lhaxV 2 L L L 4ay X+,

where the coefficients a, . . ., a5 are integers. In the “star”
multiplication hereof, x* is replaced by 1, and x! is
replaced by x, and X2 is replaced by x>, and so on. [A
polynomial may also be represented by an N-tuple of
numbers

[as;, 2, . - - ap]

In such case the star product is also known as the convolu-
tion product. For large values of N, it may be faster to
compute convolution products using the method of Fast
Fourier Transforms, which take on the order of NlogN steps
instead of N steps.] For example, taking N=5, and two
exemplary polynomials, the star multiplication gives

G2 =3+ )= 2 + 30 +5x = 1)

=25 430 + 48 4+ 56° —6xt + 1607 — 177 + 130 -2
=20 +3x% + 4+ Sx—6x +16x° — 17x2 +13x -2

= —6x* +18x° — 140 + 17x+ 3

[A secure system may use, for example N=167 or N=263.]
[This embodiment uses the ring of polynomials with integer
coefficients modulo the ideal consisting of all multiples of
xV-1. More generally, one could use polynomials modulo a
different ideal; and even more generally, one could use some
other ring R. For further information on rings and ideals,
reference can be made, for example, to Topics in Algebra by
I. N. Herstein. ]

Another aspect of the present embodiment involves
reducing the coefficients of a polynomial modulo an integer,
such as the ideal q. This essentially means dividing each
coefficient by q and replacing the coefficient with its remain-
der. For example, if =128 and if some coefficient is 2377,
then that coefficient would be replaced with 73, because
2377 divided by 128 equals 18, with a remainder of 73.
However, it is easier to use “centered remainders.” This
means that if the remainder is between 0 and q/2, it is left
alone, but if it is between g/2 and q, then q is subtracted from
it. Accordingly, using centered reminders for q=128, 2377
would be replaced by =55, since -55=73-128.

To indicate that this remainder process is being
performed, a triple equal sign (=) is used, along with the
designation “mod q.” The following is an example which
combines star multiplication of two polynomials with reduc-
tion modulo 5. The answer uses centered remainders.

22 =3+ ) 2 +3° +5x - 1)
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-continued
= —6x* + 18x° — 14x% + 17x + 3

= —x* =28 +x2 +2x -2 (mod 5).

In creating a public key cryptosystem in accordance with
an embodiment hereof (and with the previously indicated
small numbers for ease of illustration), a first step is to
choose integer parameters N, K, p, and q. Take, for example

N=5, K=1, p=3, q=128.

[A secure system may use, for example, N=167, K=6, p=3,
q=2"%= 65536.] Preferably, p and q will be relatively prime;
that is, they will have no common factors greater than 1. A
discussion of the desirability of having the ideals p and q be
relatively prime is set forth in Appendix 1. Some sets of
polynomials are chosen, as follows:
L,={polynomials whose coefficients are -2’s, —=1’s, 0
’s, 1’s, and 2’s}
L,={polynomials with two -1’s, two 1’s, and one 0 as
coefficients}
L,={polynomials whose coefficients are —1’s, 0’s, and
1’s}
[A secure system may use, for example
Lg={polyn0mials whose coefficients lie between —-177
and 177}

L,={polynomials whose coefficients are forty 1’s, forty
-1’s, the rest 0’s}
L,={polynomials whose coefficients lie between -3 and

(Note: The polynomials have degree N-1, so for the secure
parameters of the example, the polynomials have degree
166. Further, the actual message m being encoded consists
of the remainders when the coefficients of m are divided by
p, where in this example p=3.)]

The set L, is used to create the key for the cryptosystem,
the set L, is used for encoding messages, and the set L, is
the set of possible messages. For example,

2x*—x’+x-2 is in the set L, and
x*-x*-x%+1 is in the set L,

To implement the key creation of this example, the key
creator, call him Dan, chooses two polynomials f and g from
the set L. In this simplified example K=1, so there is one
polynomial g. Suppose that Dan chooses

f=xt-xP42x%-2x41
g=x*-x3+x?2x42.

[A secure system may use, for example, K+1 polynomials f,
gy, - - g € L, with K=6.]

A requirement hereof is that f must have an inverse
modulo q and an inverse modulo p. What this means is that
there must be polynomials F,, and F,, so that

F *f=1 (mod g) and F,*f=1 (mod p).

The well known Euclidean algorithm can be used to com-
pute F, and F,,. Reference can be made, for example, to
Appendix II hereof. (Some f’s may not have inverses, in
which case Dan would have to go back and choose another
f.) For the above example f, we have

F, q=103x4+29x3+1 16x°+79x+58,
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F=2x"42x.

To check that this is the right F,, for f, one can multiply

Fyx f = (103%* +29x° + 116x° + 79x + 58)
=P+ =2+ 1)
=256x* +256x — 127
=1 (mod 128).

Similarly, to check that F,, is correct, one can multiply

Fpaf =2+ 200 - + 2% = 2x+ 1)
=610 —6x% +6x-2

=1 (mod 3).

Now, the key creator Dan is ready to create his public key,
which is the polynomial h given by

h=F  *g(mod g).

[A secure system may use, for example, K polynomials 5

h,, ... h, given by
h=F *g(mod q) with i=12, .. . K,
with K=6.]

Continuing with the example, Dan would compute

Fyxg= (103" + 295" + 116x" + 79x + 58)
=P+ =2x+2)
=243¢* — 506% + 58x% +232x - 98

= —13x* = 500° + 58x% — 24x + 30 (mod 128).

Then Dan’s public key is the polynomial
h=-13x"-50x>+58"~24x+30.

Dan’s private key is the pair of polynomials (f, F,). In
principle, the polynomial f itself can function as the private
key, because Fp can always be computed from f; but in
practice Dan would probably want to precompute and save
F,.

pIn the next part of the example, encoding with the public
key is described. Suppose the encoder, call her Cathy, wants
to send Dan a message using his public key h. She chooses
a message from the set of possible message L,,. For
example, suppose that she wants to send the message

m=x*-x3+2+1.

To encode this message, she chooses at random a polyno-
mial ¢ from the set L,. For example, say she selects

g=—x*+x°-x>+1

She uses this randomly chosen polynomial @, Dan’s public
key h (as well as p and g, which are part of the public key),
and her plaintext message m to create the encoded message
e using the formula

e=pp*h+m (mod g).

[A secure system may use K public keys h, . . . ,hg, with
K=6 for the secure example. To encode a message, Cathy
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can randomly choose K polynomials @, . . . ,@, from the set
L, and then create the encoded message e by computing
e=p@,*h,+pp,*h,+ . . . +p@Fhe+m (mod q).] An alternative
would be to let h equal pF_*g (mod q), and then the message
can be encoded using the formula e=p*h+m (mod q). For the
present example, Cathy computes
po=h+m =3+ -+ D=
(=13x* = 50x% +58x% — 24x + 30) +
=P +xP+D
= —374x* + 50x% + 196x% — 357x + 487

= 10x* +50x% — 60x% +27x — 25 (mod 128).

So Cathy’s encoded message is the polynomial
e=10x*+50x°-60x>+27x-25,

and she sends this encoded message to Dan.

In the next part of the example, decoding using the private
key is described. In order to decode the message e, Dan first
uses his private key f to compute the polynomial

a=f*e(mod g).

For the example being used, he computes

fre=0" =% +26% = 20+ 1)# (10x* + 500 — 60x% + 27x = 25)
= —262x* +259%° — 124¢% — 13x + 142

= —6x* +3x° +4x% — 13x + 14 (mod 128),

so the polynomial a is
a=-6x*+3x"+4x"-13x+14.

Next, Dan uses F,, the other half of his private key, to
compute

F,*a(mod p),
and the result will be the decoded message. Thus for the
present example, Dan computes
Foxa=2x* +2x)x (=6x* +3x° + 4x% — 13x + 14)
=34 —4x® —20x +36x - 38

=x* -2 +x2 +1 (mod 3).

Reference can be made to Appendix I for further description
of why the decoding works.

In a further embodiment of the invention the ring is a ring
of matrices. For example, one can use the ring

R=(the ring of MxM matrices with integer coefficients).
An element of R looks like

air an aim
azr  ax a2y
ayr  amz T aum

where the coefficients a,; are integers. Addition and multi-
plication are as usual for matrices, and it will be understood
that the processor can treat the matrix members as numbers
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stored and operated on in any convenient manner. Let
N=M?Z, so a matrix in R has N coefficients. Relatively prime
integers p and q are chosen.
In this case, to create a private key, Dan chooses K+2
matrices from R. These matrices can be called
£8W,Wa, . .. Wi

These matrices should have the property that f,g,w,, . ..
have fairly small coefficients, and every w;, satisfies

Wk

w=0(mod p).

(In other words, every coefficient of every w; is a multiple
of p.) To create his key, Dan needs to find inverses for f and
g modulo p and q. Thus he finds matrices F,F,,G,,G,in R
satisfying

fF =I (mod p)

fF =I (mod q)

gG,=I (mod p)

gG =l (mod q)
where I is the MxM identity matrix. In general, this is quite
easy to do; and if by some chance one of the inverses fail to
exist, Dan just chooses a new f or g.

Dan’s public key is a list of K matrices (h;,h,, . . . ,hg)
determined by the condition

h;=F,w,G,

(mod q) for i=1,2, . . . K.

(Note that the w,’s are congruent to zero modulo p.) His
private key is the four matrices (f,g,F,,G,). In principle, f
and g alone can be used as the private key, but in practice it
is more efficient to precompute and store F,, G,

The encoding for this matrix example is described next.
Suppose that Cathy wants to encode a message m. The
message m is a matrix with coefficients modulo p. In order
to encode her message, she chooses at random some integers
@1, . . . Bx satistying some condition; for example, they
might be chosen to be non-negative integers whose sum
@1+ . . . +0 equals a predetermined value d. (Note that the
¢,’s are ordinary integers, they are not matrices.
Equivalently, they can be thought of as multiples of the
identity matrix, so they will commute with every element of
the ring R.)

Having chosen her @,’s, Cathy creates her encoded mes-
sage ¢ by the rule

e=p hi+oh+ . .. +ohm(mod g).

The decoding for this matrix example is described next.
We now assume that Dan has received the encoded message
e and wishes to decipher it. He begins by computing the
matrix a satistfying

a=feg (mod q).

As usual, Dan chooses the coefficients of a in some restricted
range, such as from -g/2 to q/2 (i.e., zero-centered
coefficients), or from 0 to g-1.

If the parameters have been chosen appropriately, then the
matrix a will be exactly equal to the sum

A=p W+G Wt . . . BeWiHing.

(This will always be true modulo g, but a key point is that
if q is large enough, then it will be an exact equality, not
merely modulo g.) Dan’s next step is to reduce a modulo p,
say

b=a(mod p).
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Since all of the coefficients of the w,’s are divisible by p, this
means that

b=fmg(mod p).
Finally Dan computes
F,bG,(mod p)

to recover the original message m.

The described MxM matrix embodiment has excellent
operating time. Encoding requires only additions and takes
on the order of M? operations. Decoding requires two matrix
multiplications of MxM matrices, so takes on the order of
M? operations. The message length is on the order of M?, so
if N denotes the natural message length (i.e., N=M?), then
the matrix embodiment requires O(N) steps to encode and
O(N>?) steps to decode. For comparison, the polynomial
embodiment requires O(N steps to encode and O(N?) steps
to decode, and the RSA public key system requires
O(N )steps to encode and O(N) steps to decode.

A preliminary analysis suggests that the only natural
lattice attacks on the matrix embodiment require using
lattices whose dimension is N*+N (or larger). This would be
a significant security improvement over the 2N dimensional
lattices used to attack the polynomial embodiment.

In order to avoid brute-force (or potential meet-in-the-
middle) attacks, it is necessary that the sample space for the
@,’s be fairly large, say between 2'°° and 22°°. However, this
is not difficult to achieve. For example, if the @,’s are chosen
non-negative with sum d, then the sample space has

d+K-1 _(d+K—1)!
( K-1 ]_ ANk -1)!

elements. So if one takes K=15 and d=1024, for example,
one gets a sample space with 2'°*# elements.

The public key size is KM? log,(q) bits, and the private
key size is 2M?log,(pq) bits. Both of these are of a practical
size.

FIG. 2 illustrates a basic procedure that can be utilized
with a public key encryption system, and refers to routines
illustrated by other referenced flow diagrams which describe
features in accordance with an embodiment of the invention.
The block 210 represents the generating of the public key
and private key information, and the “publishing” of the
public key. The routine of an embodiment hereof is
described in conjunction with the flow diagram of FIG. 3. In
the present example, it can be assumed that this operation is
performed at the processor system 105. The public key
information can be published; that is, made available to any
member of the public or to any desired group from whom the
private key holder desires to receive encrypted messages.
Typically, although not necessarily, the public key may be
made available at a central public key library facility or
website where a directory of public key holders and their
public keys are maintained. In the present example, it is
assumed that the user of the processor system 155 wants to
send a confidential message to the user of processor system
105, and that the user of processor system 155 knows the
published public key of the user of processor system 150.

The block 220 represents the routine that can be used by
the message sender (that is, in this example, the user of
processor system 155) to encode the plaintext message using
the public key of the intended message recipient. This
routine, in accordance with an embodiment of the invention,
is described in conjunction with the flow diagram of FIG. 4.
The encrypted message is then transmitted over the channel
50 (FIG. 1).
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The block 260 of FIG. 2 represents the routine for the
decoding of the encrypted message to recover the plaintext
message. In the present example, this function is performed
by the user of the processor system 105, who employs the
private key information. The decoding routine, for an
embodiment of the invention, is described in conjunction
with the flow diagram of FIG. 5.

Referring now to FIG. 3, there is shown a flow diagram
of the routine, as represented generally by the block 210 of
FIG. 2, for generating the public and private keys. The
routine can be utilized, in the present example, for program-
ming the processor 110 of the processor system 105. The
block 305 represents the choosing of integer parameters N,
p,> and q. As first described above, N determines the degree
of the polynomials f and g, to be generated, and p and q are,
respectively, the two ideals used in producing the star
products. The block 315 represents the selection of K, which
is the number of polynomials g; to be used. In the simplified
example above, K was 1, and it was noted that a particular
exemplary relatively secure system could use K=6. Next, the
block 325 represents the choosing of random polynomials f,
g1, G5 . . . g The coefficients may, for example, be chosen
using a random number generator, which can be
implemented, in known fashion, using available hardware or
software. In the present embodiment, each of the processor
systems is provided with a random number generator, des-
ignated by the blocks 130 and 185 respectively, in FIG. 1.

The block 340 represents application of the Euclidean
algorithm to determine the inverses, F,, and F, in the manner
described above, for the previously selected polynomial f, if
such inverses exist. If F,,, F, do not exist, the block 325 is
re-entered, and a new polynomial f is chosen. The loop 330
is continued until polynomials are chosen for which the
defined inverses can be computed. [ The probability of the
inverses existing for a given polynomial is relatively high, so
a relatively small number of traversals through the loop 330
will generally be expected before the condition is met.] The
block 350 is then entered, this block representing the com-
putation of the public key, h in accordance with

h=F  *g(mod q)

as first described above. [For K>1, there will be public key
components h, fori=1,2, ... ,K.] As represented by the block
360, the private key is retained as the polynomials f, F,, and
the public key can then be published, as represented by the
block 370.

FIG. 4 is a flow diagram, represented generally by the
block 240 of FIG. 2, of a routine for programming a
processor, such as the processor 160 of the processor system
155 (FIG. 1) to implement encoding of a plaintext message
m. The message to be encoded is input (block 420) and a
random polynomial ¢ is chosen (block 430). [If K>1, then K
random polynomials @, @,, . . . , @z are chosen.] The
polynomial can be from the set L, as described above, and
the random coefficients can be selected by any hardware or
software means, for example the random number generator
185. The encoded message, e, can then be computed (block
450) as

e=pp*h+m(mod q).

As first noted above, for K greater than 1, the encoded
message would be e=p@,*h,+p@,*h,+ . . . +pg,*h+m (mod
q). The encoded message can be transmitted (block 460)
over channel 50 to the keyholder who, in the present
example, is the user of the processor system 105.

FIG. 5 is a flow diagram represented generally in FIG. 2
by the block 260, of a routine in accordance with an
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embodiment of the invention for decoding the encrypted
message. The block 530 represents the receiving of the
encrypted message, . The retained private key information,
which includes the previously defined polynomials f and f
and the integers N, p, and g, are fetched (block 550). Next,
the block 570 represents the computation of

a=f*e(mod g).

The decoded message, designated here as m', can then be
computed (block 580) as

m'=F ,*a(mod p).

FIGS. 6, 7 and 8 are flow diagrams relating to the
above-described matrix embodiment. FIG. 6 is a flow dia-
gram of the routine, as represented generally by the block
210 of FIG. 2, for generating the public and private keys. As
above, the routine can be utilized, in the present example, for
programming the processor 110 of the processor system 105.
The block 605 represents the choosing of integer parameters
N, p, and g, where N is the number of matrix coefficients,
and p and q are relatively prime integers. The block 615
represents the selection of K, which determines the number
of matrices. Next, the block 625 represents the choosing of
random matrices f,g,w,, W,, . . . ,w, with the requirement
that w,,w,, . . . ,wy are all congruent to 0 modulo p. Again,
the random number generator 130 (FIG. 1) can be used for
this purpose.

The block 640 represents determination of the previously
defined matrices ), F , G, and G, If these matrices do not
exist, the block 625 is re-entered, and new matrices f and g
are chosen. The loop 630 is continued until matrices are
chosen for which the defined inverses can be computed. The
block 650 is then entered, this block representing the com-
putation of the public key, a list of K matrices (hy,h.,, . . . ,hy)
determined by the condition

h;=F,w,G,

(mod q) for i=1,2, . .. K.

As represented by the block 660, the private key is retained
as the matrices (f, g, F,,, G,) and the public key can then be
published, as represented by the block 670.

FIG. 7 is a flow diagram, represented generally by the
block 240 of FIG. 2, of a routine for programming a
processor, such as the processor 160 of the processor system
155 (FIG. 1) to implement encoding of a plaintext message
m using the technique of the present matrix embodiment.
The message to be encoded is input (block 720) and the
random integers @, @,, . . . @ are chosen (block 730). The
integers can be selected by the random number generator
185 (FIG. 1). The encoded message, e, can then be computed
(block 750) as

e=p h+8,h+ . . . +8hrm(mod g).

The encoded message can be transmitted (block 760) over
channel 50, to the keyholder which, in the present example,
is the user of the processor system 1085.

FIG. 8 is a flow diagram represented generally in FIG. 2
by the block 260, of a routine for decoding the encrypted
message in accordance with the present matrix embodiment.
The block 830 represents the receiving of the encrypted
message, ¢. The retained private key information, which



6,081,597

13 14
includes the previously defined F, g, F,, and G, and the m'=F,bG,(mod p).
integers N, p, and g, are fetched (block 850). Then, the block The invention has been described with reference to par-
870 represents the computation of ticular preferred embodiments, but variations within the

spirit and scope of the invention will occur to those skilled

a=feg(mod q). 5 in the art. For example, it will be understood that the public

Next, a is reduced modulo p to b (block 880) as or private keys can be stored on any suitable media, for
’ example a “smart card”, which can be provided with a
b=a(mod p). microprocessor capable of performing encoding and/or

decoding, so that encrypted messages can be communicated
The decoded message is then computed (block 890) as to and/or from the smart card.
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NTRU: A RING-BASED PUBLIC KEY CRYPTOSYSTEM

JEFFREY HOFFSTEIN, JILL PIPHER, JOSEPH H. SILVERMAN

ABSTRACT. We describe NTRU, a new public key cryptosystem. NTRU features
reasonably short, easily created keys, high speed, and low memory requirements.
NTRU encoding and decoding uses a mixing system suggested by polynomial al-
gebra combined with a clustering principle based on elementary probability theory.
The security of the NTRU cryptosystem comes from the interaction of the polyno-
mial mixing system with the independence of reduction modulo two relatively prime
integers p and g¢.

CONTENTS

. Introduction

Description of the NTRU Algorithm
Parameter Selection

. Security Analysis

. Implementation Considerations
Moderate Security Parameters For NTRU
. Comparison With Other PKCS’s
Appendix A. An Elementary Lemma

§0. INTRODUCTION

There has been considerable interest in the creation of efficient and computa-
tionally inexpensive public key cryptosystems since Diffie and Hellman [4] explained
how such systems could be created using one-way functions. Currently, the most
widely used public key system is RSA, which was created by Rivest, Shamir and
Adelman in 1978 [10] and is based on the difficulty of factoring large numbers.
Other systems include the McEliece system [9] which relies on error correcting
codes, and a recent system of Goldreich, Goldwasser, and Halevi [5] which is based
on the difficulty of lattice reduction problems.

In this paper we describe a new public key cryptosystem, which we call the
NTRU system. The encoding procedure uses a mixing system based on polynomial
algebra and reduction modulo two numbers p and g, while the decoding procedure
uses an unmixing system whose validity depends on elementary probability theory.
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The security of the NTRU public key cryptosystem comes from the interaction of
the polynomial mixing system with the independence of reduction modulo p and q.
Security also relies on the (experimentally observed) fact that for most lattices, it
is very difficult to find extremely short (as opposed to moderately short) vectors.

We mention that the presentation in this paper differs from an earlier, widely cir-
culated but unpublished, preprint (7] in two major ways. First, we have introduced
a new parameter K which can be used to produce systems with better operating
characteristics. Second, the analysis of lattice-based attacks has been expanded and
clarified, based largely on the numerous comments received from Don Coppersmith,
Johan Hastad, and Adi Shamir in person, via email, and in the recent article [3].
We would like to take this opportunity to thank them for their interest and their
help.

NTRU fits into the general framework of a probabilistic cryptosystem as de-
scribed in (1] and [6]. This means that encryption includes a random element, so
each message has many possible encryptions. Encoding and decoding with NTRU
are extremely fast, and key creation is fast and easy. See Sections 4 and 5 for
specifics, but we note here that NTRU takes O(N?) operations to encode or decode
a message block of length N, making it considerably faster than the O(N3) oper-
ations required by RSA. Further, NTRU key lengths are O(N), which compares
well with the O(IN?) key lengths required by other “fast” public keys systems such
as [9, 5].

§1. DESCRIPTION OF THE NTRU ALGORITHM

§1.1. Notatjon. An NTRU cryptosystem depends on four integer parameters
(N, K,p,q) and three sets Ly, L4, L of polynomials of degree N — 1 with integer
coefficients. We work in the ring R = Z[X]/(X™ — 1). An element F € R will be
written as a polynomial or a vector,

N
F=ZFixN_i=[FhF21--'7FN]'

i=1

We write ® to denote multiplication in R. This star multiplication is given explicitly
as a cyclic convolution product,

k-1 N
F®G=H with Hi=) FGii+Y FGnui= Y. FG,
i=1 i=k i+j=k (mod N)

When we do a multiplication modulo (say) ¢, we mean to reduce the coefficients
modulo q.

Remark. In principle, computation of a product F® G requires N? multiplications.
However, for a typical product used by NTRU, one of F or G has small coeflicients,
so the computation of F®G is very fast. On the other hand, if N is taken to be large,
then it might be faster to use Fast Fourier Transforms to compute products F ® G
in O(N log N) operations.
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§1.2 Key Creation. To create an NTRU key, Dan randomly chooses K +1 polyno-
mials f,g1,... ,9kx € £4. The polynomial f must satisfy the additional requirement
that it have inverses modulo ¢ and modulo p. For suitable parameter choices, this
will be true for most choices of f, and the actual computation of these inverses is
easy using a modification of the Euclidean algorithm. We will denote these inverses
by Fy and F,, that is,

F,® f=1 (mod q) and F,® f =1 (mod p). (1)
Dan next computes the quantities
hi=F,®g: (mod q), 1<i<K. (2)
Dan'’s public key is the list of polynomials
(h1,ho,... ,hk).

Dan'’s private key is the single polynomial f, although in practice he will also want
to store Fp,.

§1.3 Encoding. Suppose that Cathy (the encoder) wants to send a message to Dan
(the decoder). She begins by selecting a message m from the set of plaintexts L,,.
Next she randomly chooses K polynomials ¢y, ... ,¢x € L4 and uses Dan’s public
key (h1,...,hxk) to compute

K
e= ZPd’i ® h; + m (mod q).

i=1
This is the encoded message which Cathy transmits to Dan.

§1.4 Decoding. Suppose that Dan has received the message e from Cathy and
wants to decode it using his private key f. To do this efficiently, Dan should have
precomputed the polynomial F}, described in Section 1.1.

In order to decode e, Dan first computes

a=f®e (mod g),

where he chooses the coefficients of a in the interval from —g/2 to ¢/2. Now
treating a as a polynomial with integer coefficients, Dan recovers the message by
computing

F,®a (mod p).

Remark. For appropriate parameter values, there is an extremely high probability
that the decoding procedure will recover the original message. However, some
parameter choices may cause occasional decoding failure, so one should probably
include a few check bits in each message block. The usual cause of decoding failure
will be that the message is improperly centered. In this case Dan will be able to
recover the message by choosing the coefficients of a = f ® e (mod ¢) in a slightly
different interval, for example from —q/2 + z to ¢/2 + 1 for some small (positive or
negative) value of z. If no value of z works, then we say that we have gap failure
and the message cannot be decoded as easily. For well-chosen parameter values,
this will occur so rarely that it can be ignored in practice.
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§1.5 Why Decoding Works. The polynomial @ that Dan computes satisfies
K

e=f@e=) [@pd®hi+ f@®m (mod g)

f@ppi®F, ®gi+ f®m (mod ¢) from (2),

il

p¢i®gi+ f®m (mod g) from (1).

i=1
K
i=1
K
i=1
Consider this last polynomial

K

ZP¢-’ @gi+fem

i=1
For appropriate parameter choices, we can ensure that (almost always) all of its
coefficients lie between —g/2 and ¢/2, so that it doesn't change if its coefficients
are reduced modulo ¢. This means that when Dan reduces the coefficients of f®e
modulo g into the interval from —g/2 to /2, he recovers ezactly the polynomial

K
a=> ppi®g+f®m in Z[X])/(XN -1).
i=1
Reducing a modulo p then gives him the polynomial f ®m (mod p), and multipli-
cation by Fj, retrieves the message m (mod p).

§2 PARAMETER SELECTION

§2.1 Notation and a norm estimate. We define the width of an element F €ER
to be

Pl = max {F:} - min {F}.

As our notation suggests, this is a sort of L norm on R. Similarly, we define a
centered L? norm on R by

N _ 1/2 B 1 N
|Fly = (Z(Fi '—F)2> ,  where F= NZF“
i=1

i=1
(Equivalently, |F|, /v/N is the standard deviation of the coefficients of F)

Proposition. For any € > 0 there are constants ¢y,c; > 0, depending on e, N
and K, such that for randomly chosen polynomials Fy,. .. Fr Gy, .. ,Gx € R,
the probability is greater than 1 — ¢ that they satisfy

K
Z Fi®G;
i=1

Of course, this proposition would be useless from a practical veiwpoint if the ratio
cz/c1 were very large for small ¢’s. However, it turns out that even for moderately
large values of N and K and very small values of €, the constants c1,Ccq are not at
all extreme. We have verified this experimentally in a large number of situations
and have an outline of a theoretical proof.

K K
a Y Rl -G, < <) |Fl,-1Gil,. (3)
=1 o0 i=1
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§2.2 Sample spaces. As examples of typical sample spaces, we will take

Ly ={g € R : g has coefficients between —(r — 1)/2 and (r —~1)/2 inclusive}
Ly = {¢ € R : ¢ has d coefficients equal 1, d coefficients equal ~1, the rest 0}
Lm ={m € R : m has coefficients between ~(s — 1)/2 and (s — 1)/2 inclusive}

Later we will see that there are various constraints which r,d, s must satisfy in order
to achieve security. We also note that every ¢ € L4 has L? norm l¢], = V2d, while
average elements g € £y and m € Ly, have L? norms |g|, = \/N(r? — 1)/12 and
Iml, = v/N(s2 — 1)/12 respectively. To ease notation, we will write Ly, Ly, L, for
the average L? norm of elements of Ly, Ly, Ly, respectively.

Although it is not strictly necessary, we will make the additional assumption
that L., =~ pLg This assumption will make it easier to analyze possible lattice
attacks, as well as making such attacks less effective. As an example, suppose we
take d ~ N/4. Then we would take s ~ +/6p. So the natural mod p information
contained in m would have to be “thickened” by randomly adding and subtracting p
to coefficients of m.

§2.3 A decoding criterion. As described in §1.5, Dan will be able to decode
the encoded message m provided that S ppi®gi+f@ m|,, < g. We can use the
inequality (3) of the above Proposition (with K + 1 in place of K and for a suitably
small choice of £) to estimate

K K
Z}@®wﬂ®m‘SQZ}Mbhﬁ+Mymb
oo i=1

i=1

= coLy(KpLy + L)
~ capLyLy(K + 1) using the assumption L,, =~ pLg

So in order to decode (with probability 1 — ¢), Dan needs to choose parameters
satisfying the decoding constraint

epLoLo(K +1) < q. ()

§3 SECURITY ANALYSIS

§3.1 Meet-in-the-middle attacks. For simplicity {and to aid the attacker), we
assume K = 1, so an encoded message looks like e = ¢ @ h +m (mod g). Andrew
Odlyzko has pointed out that there is a meet-in-the-middle attack which can be
used against ¢, and we observe that a similar attack applies also to the private
key f. Briefly, one splits f in half, say f = f1+ f2, and then one matches f, ® e
against —f; ® e, looking for (fi, f2) so that the corresponding coefficients have
approximately the same value. Hence in order to obtain a security level of (say)
289 one must choose f, g, and ¢ from sets containing around 21° elements.

§3.2 Multiple transmission attacks. Again for simplicity we assume that K =
1. We observe that if Cathy sends a single message m several times using the
same public key but different random ¢’s, then the attacker Betty will be able
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to recover a large part of the message. Briefly, suppose that Cathy transmits e; =
¢i®h+m (mod g) fori = 1,2,...,r. Betty can then compute {ei—e1)®h™! (mod q),
thereby recovering ¢; — ¢; (mod q). However, the coefficients of the ¢'s are so small
that she recovers exactly ¢; — ¢1, and from this she will recover exactly many of
the coefficients of ¢;. If 7 is even of moderate size (say 4 or 5), Betty will recover
enough of ¢; to be able to test all possibilities by brute force,thereby recovering m.
Thus multiple transmission are not advised without some further scrambling of the
underlying message. We do point out that even if Betty decodes a single message in
this fashion, this information will not assist her in decoding any further messages.

§3.3 Lattice based attacks.

We begin with a few words concerning lattice reduction. The goal of lattice
reduction is to find one or more “small” vectors in a given lattice M. In theory,
the smallest vector in M can be found by an exhaustive search, but in practice
this is not possible if the dimension of M is large. The LLL algorithm of Lenstra-
Lenstra-Lovész [8], with various improvements due to Schuorr [11, 12] and others,
will find small vectors of M in polynomial time, but for most lattices of large
( > 100, say) dimension, it will not find the smallest vector, and the gap between
the smallest LLL-determinable vector and the actual smallest vector appears to
increase exponentially with the dimension. In order to describe the security of
NTRU from lattice attacks, we consider the following three hypotheses on lattices
of large dimension:

(H;) For most lattices M, the length o(M) of the smallest non-zero vector
of M satisfies

dim(M) Disc(M)Y 4m(M) < o( A1) < /dm:r(:’f) Disc( M)/ dim(rM)

2me

Hence if v € M satisfies

IVI > 4 dlm(M) DiSC(M)l/dim(M>,
- e

then v will be hidden in a cloud of exponentially many vectors of ap-
proximately the same length.

(H2) Suppose that the lattice M has a vector w which is smaller than the
shortest expected vector described by (H;), but that M is otherwise a
“random” lattice. If w satisfies

lwl > K—dim(M) [dlm(M) DiSC(M)I/dim(M),
e

then lattice reduction is highly unlikely to find w.

(Hs) Suppose we are in the situation of (Hz). Then the smallest non-zero
vector v computed by lattice reduction methods is almost certain to
satisfy

|VLLLI > I{dim(M)|W|.
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Remark. The lattice reduction constant x which appears in hypotheses (H;) and
(Hs) must be determined by experimentation and experience. This is similar to
the situation with the RSA PKCS, where security rests on estimating current ca-
pabilities for factoring products pq. It is even more closely analogous to the PKCS
described in [5], whose security is directly linked to the difficulty of finding small (al-
most orthogonalized) bases for lattices. Experiments with lattices of large ( > 100)
dimension suggest that one can take x = 1.57/1%_ (See, for example, [11] and [12].)
And just as future advances in factorization will require the use of larger primes
in the RSA PKCS, so future advances in lattice reduction will undoubtedly require
using a smaller value of x and correspondingly larger parameters in NTRU. We also
mention that we will only need to assume hypotheses (Hz) and (Hj) for lattices of
dimensjon greater than 700. For lattices of such high dimension, even the LLL algo-
rithm with Schnorr’s block reduction improvement takes quite a long time. If we are
willing to assume hypotheses (Hz) and {(Hs3) for lattices of dimension around 300,
we can choose NTRU parameters with even better operating characteristics.

§3.3.1 Small lattice attack on the key f. We begin with what is probably the
most natural lattice, namely we take any one of the hi's and search for the small
vector f with the property that h; ® f (mod q) is also small. To do this, we write
hi = [hi1,... , hin] and consider the lattice M generated by the columns of the
following matrix:

A 0 0 0 0 0

0 A 0 0 0 0

0 0 A 0 0 0

M= hiv  h - hiv | g o - 0
Rz hiz hiy 0. q 0

hin ha - hinyoq| O 0 q

With an eye towards future notational convenience, we will write this matrix as

Al O
M= ( hi qf ) '
The quantity A will be chosen by the attacker to optimize the attack. We observe
that M satisfies
dim(M) =2N  and  Disc(M) = AVgV.

There are two issues to consider. First, is the actual key f embedded in M as a
short vector. Notice that A contains the target vector

vtarg = [)\fN: vAflygilw" vgiN}v

and knowledge of vtarg allows recovery of f. However, we can compute the length

of Vtarg a8
lvtarglz Y p‘f‘% + !gilg =Lgv AT+ 1






