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1 Cover Sheet 

This is an overview document of the NTRU lattice-based cryptosystem for sub-
mission to the NIST post-quantum cryptography call for standardization. The 
submitted cryptosystem consists of : 

– ntru-pke: a public key encryption (PKE) scheme based on the “original 
NTRU” encryption algorithm by Hoffstein, Pipher and Silverman [26] with 
parameter sets derived from a recent revision [24], that achieves CCA-2 se-
curity via NAEP transformation [30]; 

– ntru-kem: a key encapsulation mechanism (KEM) using the above public key 
encryption algorithm; 

– ss-ntru-pke: a public key encryption scheme based on the provable secure 
NTRU encryption algorithm [36] that achieves CCA-2 security via NAEP 
transformation [30]; 

– ss-ntru-kem: a key encapsulation mechanism (KEM) using the above public 
key encryption algorithm. 

This documents addresses the following requirements: 

– Specifications 
– Performance analysis 
– A statement of the advantages and limitations 
– Cover sheet 
– Reference implementation 
– Security analysis 
– Statement of IPR 

Submission information: 

– Principal submitter: Zhenfei Zhang, zzhang@onboardsecurity.com, On-
board Security, 187 Ballardvale St. Suite A202, Wilmington, MA, 01887, 
U.S. 

– Auxiliary submitters: Chen Cong, Jeffrey Hoffstein and William Whyte. 
– Inventors of the cryptosystem: Jeffrey Hoffstein, Jill Pipher, John M. 

Schanck, Joseph H. Silverman, William Whyte and Zhenfei Zhang. 
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– Name of the owner of the cryptosystem: Onboard Security Inc. 
– Backup point of contact: William Whyte, wwhyte@onboardsecurity.com, 

Onboard Security, 187 Ballardvale St. Suite A202, Wilmington, MA, 01887, 
U.S. 

The following academic papers contain cryptographic designs, hardness re-
sults, security analysis and parameter derivations related to the submitted cryp-
tosystem. 

– NTRU, A ring-based public key cryptosystem, 1998. 
– NAEP: provable security in the presence of decryption failures, 2003. 
– A hybrid lattice-reduction and meet-in-the-middle attack against NTRU, 2007. 
– Choosing NTRUEncrypt parameters in light of combined lattice reduction 

and MITM approaches, 2008. 
– Making NTRU as secure as worst-case problems over ideal lattices, 2011. 
– Choosing parameters for NTRUEncrypt, 2017. 

Additional information related to implementations, such as public key/private 
key encodings, conversions, etc. can be found in the additional supporting doc-
ument: 

– Efficient Embedded Security Standard (EESS) #1. Version 3.3, 2017. 

2 Algorithm Specifications 

2.1 Notation 

We use lower case bold letters for vectors, upper case bold letters for matrices. 
For a polynomial f(x) = f0 + f1x + · · · + fn−1x

n−1, we denote its vector form 
.by f .= hf0, f1, . . . , fn−1i. We sometimes abuse the notation of vector and poly-

nomial when there is no ambiguity. For a polynomial/vector f , the norms are qPn−1 .kfk ..= f2 and kfk∞ .= max(|fi|).i=0 i 
.We often use the polynomial rings Rq .= Z[x]/F (x) with F (x) = xn ± 1. A 

cyclic rotated matrix of a polynomial f(x) over the ring Rq is a matrix M = 
)T n(f1, f2, . . . , fn with fi = f(x)xi−1 mod F (x). If F (x) = x − 1 it is literally 

cyclic, and it is close to cyclic, up to signs, if F (x) = xn + 1. 
For a real a, we let bae denote the closet integer to a. For an integer a, we use 

.[a]q to denote a mod q; bacp .= (a− [a]p)/p for the operation of rounding a to the 
closest multiple of p. Modular operations are center lifted, for example a mod q 
returns an integer within −q/2 and q/2. These notations are also extended to 
vectors and matrices. 

We set the notation: 

BN = {binary polynomials}
TN = {trinary polynomials}� � 

trinary polynomials with exactly TN (d, e) = 
d ones and e minus ones 

If N is fixed we will write B, T and T (d, e) instead. 
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2.2 NTRU and lattices 

A lattice L is a discrete sub-group of Rn, or equivalently, the set of all the integral 
combinations of d ≤ n linearly independent vectors over R: 

L ..= Zb1 + Zb2 + · · · + Zbd, bi ∈ Rn . 

B ..= (b1, . . . , bd)
T is called a basis of L. 

Definition 1 (γ-SVP and uSVP). Given a lattice L, finding a vector that 
is no longer than γ · λ1(L) is called the approximate shortest vector problem 
(γ-SVP), where λ1 is the first minima, i.e, the length of the shortest vector, of 
the lattice. 

Given a particular lattice L, where there exists a unique shortest non-zero 
vector, finding this vector is called the unique shortest vector problem. 

Let f(x), g(x) and h(x) be 3 polynomials in Rq, where f(x) and g(x) have 
−1very small coefficients; h(x) = p g(x)f−1(x). We express by f , g and h the 

vector form of the polynomials. Also let F, G and H be the matrix obtained 
from nega-cyclic rotations. The NTRU lattice with regard to h is defined as 

Lh = {(u, v) ∈ R2 : uh = v}q 

or rather, the vector/matrix form: 

Lh = {(u, v) : uH = v mod q}� � 
0 qINwhere there exists a public basis P = and a secret generator [pF|G].
IN H 

Definition 2 (NTRU assumption). Given h, it is hard to find f and g. 

The NTRU assumption can be reduced to the uSVP for the NTRU lattice. 

2.3 Auxiliary functions 

Let us first define some auxiliary functions. Those functions are the building 
blocks for our algorithm. We give a generic description for those functions. Im-
plementers may choose to use better (more secure or more efficient) instantia-
tions when and if they are available. Also note that Gaussian samplers are only 
used by ss-ntru-pke and ss-ntru-kem. 

Hash function. Through out the paper we will use Hash to denote a crypto-
graphic secure hash function that takes arbitrary input length and outputs a 
binary string with arbitrary length. In our submission, we use SHA-512 for such 
an instantiation. 



Seed expansion function. We will use a Salsa20 [10] based pseudo-random number 
generator as the seed expansion function. Salsa20 is a fast and well accepted 
stream cipher. It is up to 5 times faster than the AES based solutions through 
our benchmark on computers that do not have AES-NI instructions. We remark 
that although we did not use the AES-based seed expansion function provided 
by NIST for efficiency reasons, such a modification can be made quite easily. 

Trinary Polynomial Generation function. This implementation require a func-
tion that samples uniformly from B, T and T (d, e). This function can be build 
deterministically via a seed and a hash function. 

Discrete Gaussian sampler (DGS). Input a dimension N and a standard devia-
tion σ it outputs a discrete Gaussian distributed vector. In this implementation 
we use the Box-Muller approach. We remark that there are better samplers in 
terms of efficiency or security. We leave the investigation of those samplers to 
future work. 

Deterministic Discrete Gaussian sampler (DDGS). Input a dimension N , a stan-
dard deviation σ and a seed s, it deterministically outputs a discrete Gaussian 
distributed vector. 

2.4 The schemes 

We sketch the algorithms related to our proposed schemes. For simplicity and 
clearness of the presentation, we omit minor details in this high level description. 
Those include, for example, checking that the length of the message is valid, 
encoding/packing ring elements into binary strings and vice versa, etc. For those 
details we refer the readers to the implantation specification document submitted 
along with this document. 

The ntru-pke scheme . The ntru-pke schemes use Algorithms 1, 2 and 3. 
In an NTRU cryptosystem, f (and g, if required) are the private keys, while h 

is the public key. Those keys can be generated via algorithm 1. Note that we use 
the classical NTRU flat form (non-product form, cf. [24]) keys with a pre-fixed 
number of +1s and −1s. 

Algorithm 1 ntru-pke.KeyGen 
Input: A parameter set Param = {N , p, q, d} and a seed. 
1: Instantiate Sampler with T (d + 1, d) and seed; 
2: f ← Sampler 
3: if f is not invertible mod q then go to step 2 end if 
4: g ← Sampler 
5: h = g/(pf + 1) mod q 
Output: Public key h and secret key (pf , g) 



Algorithm 2 ntru-pke.Encrypt 
Input: Public key h, message msg of length mlen, a parameter set Param and a seed. 
1: m = Pad(msg, seed) 
2: rseed = Hash(m|h) 
3: Instantiate Sampler with T and rseed; 
4: r ← Sampler 
5: t = r ∗ h 
6: tseed = Hash(t) 
7: Instantiate Sampler with T and tseed; 
8: mmask ← Sampler 
9: m 0 = m − mmask (mod p) 

010: c = t + m 
Output: Ciphertext c 

The encryption algorithm in Algorithm 2 uses a padding method to deal with 
potential insufficient entropy in a message. Assuming the message length is valid 
and less than (N − 173) bits , the padding algorithm works as follows: 

1. Convert msg into a bit string. Each bit forms a binary coefficient for the 
lower part of the polynomial m, starting from coefficient 0. 

2. The last 167 coefficients of m(x) are randomly chosen from {−1, 0, 1} (with 
an input seed). This gives over 256 bits entropy. 

3. The length of msg is converted into an 8 bit binary string, and forms the 
last 173 to 168 coefficients of m(x). 

Algorithm 3 ntru-pke.Decrypt 
Input: Secret key f , public key h, ciphertext c, and a parameter set Param. 
1: m 0 = f ∗ c (mod p) 
2: t = c − m 
3: tseed = Hash(t) 
4: Instantiate Sampler with T and tseed; 
5: mmask = Sampler 
6: m = m 0 + mmask (mod p) 
7: rseed = Hash(m|h) 
8: Instantiate Sampler with T and rseed; 
9: r ← Sampler 
10: msg, mlen = Extract(m) 
11: if p · r ∗ h = t then 
12: result = msg, mlen 
13: else 
14: result = ⊥ 
15: end if 
Output: result 



The Extract() operation in Algorithm 3 is the inverse of Pad() so we omit 
the details. It outputs a message m and its length mlen. 

Remark 1. Since NIST’s API does not have an input field for the public key 
h, we have encoded the public key in the secret key to make the algorithm 
compatible with the existing API. 

The ntru-kem algorithms We recommend that ntru-kem to be used for ephemeral 
key establishments via the following algorithms. ntru-kem uses a same key gen-
eration algorithm as ntru-pke, namely, Algorithm 2. Here we present the encap-
sulation and decapsulation algorithms in Algorithms 4 and 5. 

In a nutshell, the ntru-kem scheme uses an ntru-pke scheme to transport an 
encapsulated secret, and uses both this secret and the public key to derive a 
shared secret via a secure Key Derivation Function (KDF). 

Algorithm 4 ntru-kem.Encap 
Input: Public key h, a parameter set Param, and a seed 
1: encaped secret ← {0, 1}8×CRYPTO BYTES 

2: c =ntru-pke.Encrypt(h, encaped secret, CRYPTO BYTES, Param, seed) 
3: ss = KDF(encaped secret, h). 
Output: A ciphertext c and the shared secret ss. 

Algorithm 5 ntru-kem.Decap 
Input: Secret key f and a parameter set Param 
1: encaped secret =ntru-pke.Decrypt(f , h, c, Param); 
2: ss = KDF(encaped secret, h). 
Output: The shared secret ss. 

The ss-ntru-pke algorithms The ss-ntru-pke schemes use Algorithms 6, 7 and 
8. 

Algorithm 6 ss-ntru-pke.KeyGen 
Input: Parameter sets Param = {N , p, q, σ} and a seed 
1: Instantiate Sampler with χN

σ and seed; 
2: f ← Sampler, g ← Sampler; 
3: h = g/(pf + 1) mod q 
Output: Public key h and secret key (pf , g) 



ss-ntru-pke uses a similar key generation algorithm as ntru-pke. The major 
difference is that f and g are sampled from a Gaussian with deviation σ, rather 
than from T (d, d + 1). In addition, since ss-ntru-pke works over the polynomial 
ring Zq [x]/(x

N + 1), where every element has an inverse, we are not required to 
check if f and g has an inverse. 

Algorithm 7 ss-ntru-pke.Encrypt 
Input: Public key h, message msg of length mlen, Param and a seed 
1: m = Pad(msg, seed) 
2: rseed = Hash(m|h) 
3: Instantiate Sampler with χN

σ and rseed; 
4: r ← Sampler, e ← Sampler 
5: t = p · r ∗ h 
6: tseed = Hash(t) 
7: Instantiate Sampler with B and tseed; 
8: mmask ← Sampler 
9: m 0 = m − mmask (mod p) 
10: c = t + p · e + m 0 

Output: Ciphertext c 

Algorithm 8 ss-ntru-pke.Decrypt 
Input: Secret key f , public key h, ciphertext c, and a parameter Param. 
1: m 0 = f ∗ c (mod p) 
2: t = c − m 
3: tseed = Hash(t) 
4: Instantiate Sampler with B and tseed; 
5: mmask ← Sampler 
6: m = m 0 + mmask (mod p) 
7: rseed = Hash(m|h) 
8: Instantiate Sampler with χN

σ and rseed; 
9: r ← Sampler 
10: e = p −1(t − r ∗ h) 
11: if |e|∞ ≥ τσ then 
12: result = ⊥ 
13: else 
14: result = Extract(m) 
15: end if 
Output: result 

The ss-ntru-kemalgorithms The algorithms for ss-ntru-kem are described in 9 
and 10. It uses the same method as ntru-kem to convert a public key encryption 
scheme into a key encapsulation mechanism. 



Algorithm 9 ss-ntru-kem.Encap 
Input: Public key h, message msg of length mlen, a parameter set Param and a seed 
1: encaped secret ← {0, 1}8×CRYPTO BYTES 

2: c =ss-ntru-pke.Encrypt(h, encaped secret, CRYPTO BYTES, Param, seed) 
3: ss = KDF(encaped secret, h). 
Output: A ciphertext c and the shared secret ss. 

Algorithm 10 ss-ntru-kem.Decap 
Input: Secret key f and a parameter set Param 
1: encaped secret =ss-ntru-pke.Decrypt(f , h, c, Param); 
2: ss = KDF(encaped secret, h). 
Output: The shared secret ss. 

3 Design Rationale 

3.1 Hardness assumption 

Overview We first give an overview of the hardness assumptions in this pro-
posal. 

– For ntru-pke and ntru-kem schemes: 
• The CPA security is based on the NTRU assumption; 
• We use the NAEP transformation [31] to convert the scheme into a CCA-
2 secure encryption scheme. 

– For ss-ntru-pke and ss-ntru-kem schemes: 
• The CPA security is based on the ring learning with error (R-LWE) 
problem [36]; 

• We use the NAEP transformation [31] to convert the scheme into a CCA-
2 secure encryption scheme. 

All the above problems and notions are well studied in the literature, except 
perhaps for the NAEP transform. Therefore we give a high level description of 
NAEP and show its connections to the well-known Fujisaki-Okamoto transform. 

NAEP transform In [17], the authors proposed a generic method to transform 
a CPA secure encryption algorithm into a CCA-2 secure version. This method 
is usually referred to as Fujisaki-Okamoto transform. At a high level, it works 
as follows. During the encryption, one first chooses a salt, and appends it to the 
message. Then one hashes the appended message into a random element that is 
to be used in the encryption. During the decryption, after one has recovered the 
padded message, one re-encrypts the message with the same salt, and compares 
the resulting ciphertext with the received one. If those two does not match, abort 
the decryption. 

The NEAP [31] transform that we use in Algorithms 2 and 7 is similar to the 
above Fujisaki-Okamoto transform. In addition, it builds an additional all-or-
nothing mask which is also derived from the hash of the padded message. With 



this mask, one will either recover all the coefficients of the message polynomial, 
or no coefficient at all. It also seals the information leakage of m(1) when a 
polynomial ring of the form xN − 1 is used. 

3.2 Parameters 

We present our parameter sets in Table 1 and the macros related to NIST’s APIs 
in Table 2. We estimate that 

– NTRU-443 provides 128 bits classical security and 84 bits quantum security; 
– NTRU-743 provides 256 bits classical security and 159 bits quantum security; 
– NTRU-1024 provides �256 bits classical security and 198 bits quantum se-

curity. 

The details of the above estimations shall be presented in the next subsection. 

Table 1. Parameters 

Param N q p R d σ MaxMSGLen 

NTRU-443 

NTRU-743 

NTRU-1024 

443 

743 

1024 

2048 

2048 

230 + 213 + 1 

3 

3 

2 

Zq [x] 
xN −1 
Zq [x] 
xN −1 
Zq [x] 
xN +1 

143 

247 

N/A 

N/A 

N/A 

724 

33 bytes 

73 bytes 

95 bytes 

Table 2. MACRO definitions for NIST’s API 

Param NTRU-443 NTRU-743 NTRU-1024 
Scheme ntru-pke ntru-kem ntru-pke ntru-kem ss-ntru-pke ss-ntru-kem 

CRYPTO SECRETKEYBYTES 
CRYPTO PUBLICKEYBYTES 

CRYPTO BYTES 
CRYPTO CIPHERTEXTBYTES 

701 
611 
32 
611 

1173 
1023 
48 

1023 

8194 
4097 
48 

4097 

We address NIST’s required security levels as follows: 

– Level 1, equivalent to a128-bit block cipher: use ntru-pke and ntru-kem with 
parameter set NTRU-443 or NTRU-743; 

– Level 2, equivalent to a 256-bit hash function: use ntru-pke and ntru-kem with 
parameter set NTRU-743; 

– Level 3, equivalent to a 192-bit block cipher: use ntru-pke and ntru-kem with 
parameter set NTRU-743; 

– Level 4, equivalent to a 384-bit hash function: use ntru-pke and ntru-kem with 
parameter setNTRU-743, or (for extremely conservative purpose) ss-ntru-
pke and ss-ntru-kem with parameter set NTRU-1024; 



– Level 5, equivalent to a 256-bit block cipher: use ntru-pke and ntru-kem with 
parameter set NTRU-743, or (for extremely conservative purpose) ss-ntru-
pke and ss-ntru-kem with parameter set NTRU-1024. 

3.3 Best known attacks 

Summary In this evaluation, we will 

1. follow the original BKZ 2.0 analysis [13] with the extreme pruning method 
to estimate the classical security; 

2. follow the new analysis in [6] using BKZ 2.0 with quantum sieving to estimate 
the quantum security. 

For completeness, we also give the analysis result of 

3. the new analysis in [6] using BKZ 2.0 with classical sieving. 

However, we will not use this result to estimate the classical security, due to the 
excessive space requirement. We will give more details in the following sections. 

Table 3. Best Known attacks and their costs 

Param 
BKZ + Enum BKZ + Sieving BKZ + QSieving 
uSVP Hybrid uSVP Hybrid uSVP Hybrid 

NTRU-443 189 128 93 89 85 84 
NTRU-743 443 268 176 173 159 163 
NTRU-1024 590 805 218 316 198 287 

Lattice attacks For an NTRUEncrypt public key polynomial h, let H be the 
matrix whose row vectors are the cyclic rotation of h. Then the NTRU lattice 
associated with h uses a basis � � 

qIN 0 
B = 

H IN 

where IN is an N -dimensional identity matrix. With in this NTRU lattice, there 
exist unique shortest vectors, namely, the vector form of hf , gi and its cyclic 
rotations. 

This attack was firstly presented in the original NTRU paper [27] circulated 
during the rump session of Crypto’96. It was later observed in [15] that one 
does not necessarily need to find the exact secret key to be able to decrypt. An 
attack is successful if the attacker can locate any vectors in this lattice that are 
sufficiently small (such as a cyclic rotation of the secret key). 



 

It has been shown in [18] that the ability to locate a unique shortest vector 
in a lattice depends on the root Hermite factor of the lattice, which is the n-th 
root of 

Gaussian expected length 
l2 norm of the target vector 

where n is the dimension of the lattice. 
Here, we give an estimation of the root Hermite factor for the proposed 

parameter set. This lattice has a dimension of 2N . The Gaussian expected length 
of the shortest vector in this lattice is p

qN/πe, 

while the l2 norm of the target vectors are kf , gk2. This gives the root Hermite 
factor of the lattice as p ! 1 

Nq/πe 
2N 

. 
kf , gk2 p

For ntru-pke and ntru-kem we have kf , gk2 ≈ 4N/3, while for ss-ntru-pke and√ 
ss-ntru-kem we have kf , gk2 ≈ 2Nσ. The table below gives the root Hermite 
factor of corresponding parameter sets. 

Table 4. Root Hermite Factor for NTRU lattices 

N q kf , gk2√ rhf 
443 2048 572 ≈ 23.92√ 1.0030 
743 2048 988 ≈ 31.43 1.0020 
1024 230 + 213 + 1 32764.5 1.0011 

It was believed that the current technique of BKZ 2.0 [13] is only able to find 
a short vector with a root Hermite factor of at least 1.005. However, in [6], the 
authors give a conservative analysis of the cost of BKZ 2.0 reduction. As pointed 
out by the authors themselves, those estimations are very optimistic about the 
abilities of an attacker. In particular, unlike the analysis of BKZ 2.0 [13], where 
the cost of shortest vector subroutines is estimated via the cost of enumeration 
with extremely pruning [19], this analysis assumes that for large dimensional 
lattices, shortest vector problems can be solved very efficiently using heuristic 
sieving algorithms, ignoring the sub-exponential to exponential requirement of 
space. 

Giving a few details, the best known classical and quantum sieving algorithms 
have time costs of 20.292n and 20.265n, respectively [7]. The best plausible quan-
tum short vector problem solver costs more than 20.2075n since this is the space 
required to store the list of vectors. In practice, sieving tends to process much 
slower than enumeration techniques. Moreover, sieving algorithms require a sim-
ilar level of space complexity (exponential in n), while the space requirement of 
enumeration techniques is polynomial. 



�

For the sake of completeness, we present the estimated cost of BKZ with 
classical and quantum sieving algorithms, following the methodology of [6]. It is 
easy to see that the space requirement for classical sieving algorithms is far from 
practical. For example, it is estimated that the world’s storage capacity is around 
295 exabytes ≈ 268 bits [1]; and the number of atoms in the whole earth is around 
1049 ≈ 2162 [2]. Thus we do not use BKZ with classical sieving to estimate the 
classical security of our parameters. Nonetheless, we do use BKZ with quantum 
sieving algorithms to estimate the quantum security, in accounting for unknown 
effects on data storages with quantum computers. 

Table 5. Lattice strength following analysis of [6] 

N m b Known Classical Known Quantum Best Plausible Space Requirement 
443 
743 
1024 

390 321 
613 603 
1870 747 

93 
176 
218 

85 
159 
198 

66 
125 
155 

> 266 

> 2125 

> 2155 

m: the number of used samples 
b: block size for BKZ 2.0 

Known Classical: using the best known classical SVP solver 
Known Quantum: using the best known quantum SVP solver 

Best Plausible: using a best plausible quantum SVP solver 
Space Requirement: requirement for all 3 sieving algorithms 

Search attack For NTRU with trinary keys, since the secret keys are trinary 
polynomials with df number of 1s and −1s, the search space for the secret key is 

N
�

df,df /N . For example, with parameter set NTRU-743, we have 21158 candidates. 
(The factor 1/N comes from the fact that an attacker can guess any of N cyclic 
rotations of the secret key, rather than just the secret key itself.) We remark that 
this key space for our parameter set is considerably larger than that in [25] due 
to the switch from product form polynomials to flat form polynomials. This is 
sufficient even with the presence of meet-in-the-middle attacks [28] and quantum 
attacks using Grover’s algorithm [21]. 

Hybrid attack The previous best known attack against NTRU, prior to the 
BKZ with quantum sieving analysis [6], was the hybrid attack [29] which is a 
hybrid of a lattice attack and a meet-in-the-middle search attack. 

The rough idea is as follows. One first chooses N1 < N and extracts a block, 
B1, of 2N1 × 2N1 coefficients from the center of the matrix B. The rows of B1 

are taken to generate a lattice L1. ⎞ �� 
0qIN = 

⎛⎝ qIr1 0 0 
∗ B1 0 
∗ ∗ Ir2 

⎠
H IN 

(1) 



A lattice reduction algorithm is applied to find a unimodular transformation, U0 , 
such that U0B1 is reduced, and an orthogonal transformation, Y0, is computed 
such that U0B1Y

0 = T0 is in lower triangular form. These transformations are 
applied to the original basis to produce a basis for an isomorphic lattice: 

T = UBY = 

⎛⎝ Ir1 0 0 
0 U0 0 
0 0 Ir2 

⎛⎝ ⎞ ⎠ qIr1 0 0 
∗ B1 0 
∗ ∗ Ir2 

⎛⎝ ⎞ ⎠ Ir1 0 0 
0 Y0 0 
0 0 Ir2 

⎞ 
= 

⎛⎝ qIr1 0 0 
∗ T0 0 
∗ ∗ Ir2 

⎞ ⎠ ⎠ .(2) 

Notice that (g, f)Y is a short vector in the resulting lattice. 
By a lemma of Furst and Kannan (Lemma 1 in [29]), if y = uT+x for vectors 

u and x in Z2N , and −Ti,i/2 < xi ≤ Ti,i/2, then reducing y against T with 
Babai’s nearest plane algorithm will yield x exactly. Thus if v is a shortest vector 
in L and T is well reduced, it is guaranteed that v can be found by enumerating 
candidates for its final K = 2N − r2 coefficients. In the initial hybrid attack 
paper, this enumerating process was done via meet-in-the-middle attacks. To 
accommodate the quantum attack models, we will use Grover’s algorithm to 
analize the cost of this enumeration. 

Now we are ready to present the cost of the classical hybrid attack and 
compare it with solving directly the uSVP. 

Table 6. BKZ with classical enumeration, hybrid attack vs. uSVP 

Param 
Hybrid Attack Parameters uSVP 
dim β K Cost β cost 

NTRU-443 
NTRU-743 
NTRU-1024 

620 
890 
2047 

241 
413 
953 

161 
338 
140 

> 128 
> 267 
> 811 

321 
602 
747 

> 189 
> 443 
> 590 

Table 7. BKZ with quantum sieving, hybrid attack vs. uSVP 

Param 
Hybrid Attack Parameters uSVP 
dim β K Cost β cost 

NTRU-443 
NTRU-743 
NTRU-1024 

411 
645 
2047 

317 
616 
1901 

105 
205 
50 

> 84 
> 163 
> 289 

321 
602 
747 

> 85 
> 159 
> 198 

Subfield attack Subfield attacks against NTRU have been considered in [8]. It 
was reported in [4] that for certain “over-stretched” NTRU parameters, one can 
exploit a subfield. This attack was only applicable to the NTRU lattices that are 
used to instantiate a (fully) homomorphic encryption scheme. The authors of [4] 
also showed that for our parameters the subfield attack will not be successful. 



3.4 Decryption error rates 

We summarize the result in Table 8. 

Table 8. Decryption error rate 

NTRU-443 NTRU-743 NTRU-1024 
< 2−196 < 2−112 < 2−80 

We note that for all three parameter sets, it is safe to assume that no decryp-
tion errors will be observed, assuming the maximum number of key exchange or 
encryption that one will perform is bounded by 264 as suggested by NIST. 

For detailed analysis of decryption rate of NTRU-443 and NTRU-743, see [24]. 
For NTRU-1024, we give the following analysis. 

Recall that in decryption one computes 

0 m = f ∗ c = p · r ∗ g + p · e ∗ f + m 0 ∗ f mod q. 

A decrypt error will occur if kp · r ∗ g + p · e ∗ f + m0 ∗ f k∞ > q/2 which will 
cause a wraparound. It is sufficient to focus on the first two terms since m0 is a 
lot smaller than p · r ∗ g or p · e ∗ f . Hence we need to compute the probability 
that 

kr ∗ g + e ∗ fk∞ > q/(2p) 

Two simplify the analysis, we know that r, g, e, f are all sampled from Gaussian 
with σ, therefore each coefficient of (r ∗ g + e ∗ f) is a sum of 2N products of two 
Gaussian integers. The distribution of product of two Gaussian integers with a 
same deviations σ is a normal product distribution 

K0( σ
z 
2 )

D(z) = 
πσ2 

where Z ∞ cos (zt)
K0(z) = dt 

0 t2 + 1 

This allows us to estimate that 

Prob[x > q/(4Np)] / 2−102 

for a single integer with normal product form distribution. Since each coefficient 
of (r ∗ g + e ∗ f) is a sum of 2N samples from D(z), require the above event 
happens for the all the 2N samples for each coefficients, therefore we estimate 
that the decryption error rate will be 

1 − (1 − 2−102)(2N)2 

≈ 2−80 



3.5 Advantages and limitations 

Most scrutinized lattice-based cryptosystem The NTRU encryption algorithm 
was created in 1996, and has survived over 20 years of cryptanalysis. It’s cryp-
tographic design has been a fertile source of inspiration to other cryptographers, 
with uses ranging from the notion of ideal lattices [35] to the construction of 
some fully homomorphic encryption schemes [20,34]. To date, we see many can-
didate quantum safe algorithms building upon NTRU or related ideas, such as 
NTRU-prime [9] and NTRU-KEM [32]. The NTRU trapdoor is still the most 
efficient way to design lattice based signature schemes. 

The NTRU algorithm was standardized by IEEE 1363 [3] in 2008 and ANSI 
X9.98 [37] in 2010. Both standards use the parameters from [23] in 2008. Those 
parameters have been stable for almost 10 years, despite of the rapid development 
of lattice cryptanalysis over the last decade, including BKZ 2.0 [13], BKZ 2.0 
with sieving [6], subfield attacks [8,5,14,33] and more. 

Small package sizes NTRU has the smallest public key and ciphertext sizes, 
compared to other lattice based solutions, such as NewHope [6] or Kyber [11]. 
This is particularly interesting for handshake protocols, since in those protocols, 
it is crucial to fit the handshake payloads in a single Maximum Transmission Unit 
(MTU). Otherwise, one would expect some package drops that may potentially 
slow down the protocol and require additional protocol-level features (such as 
fragmentation management), or even cause the handshake to fail. 

The MTU is usually 1.5 kbytes. It allows for a maximum package payload 
of around 1 kbytes, with the rest reserved for hello messages. The NTRU based 
solutions, to the best of our knowledge, are the only ones that fit in this model. 

Lack of provable security One question that has been asked frequently about 
NTRU is its lack of provable security. To be precise, one can reduce the security 
of NTRU encryptions to the unique shortest vector problem over an NTRU lattice. 
The “lack of security” here means that, unlike some LWE based schemes, where 
the uSVP problem is over a generic lattice, and may be proven hard for certain 
parameters (which are often not the same parameters used to instantiate the 
actual scheme, see [12] for example), the uSVP problem for NTRU lattices has 
no proof of hardness. 

We provide two arguments to address this concern. First, in [36] it was shown 
that one can establish a reduction to R-LWE problems for certain choices of 
parameters. Indeed, the ss-ntru-pke algorithms in this submission follows this 
direction. 

On the other hand, in order to provide best performance, we also derive 
parameters for ntru-pke, based on the best known attacks with a comfortable 
margin. To validate our understanding of cryptanalytic techniques, we published 
the NTRU challenge. Only the first few challenges of tiny dimensions have been 
broken, as we expected, and the running time to break those challenges aligns 
with our expectation [24]. 



3.6 Performance and implementations 

Benchmark We present the benchmark results in Table 9. We tested our imple-
mentation with a dual core Intel i7- 6600U processor @ 2.60GHz. Our operation 
system was Linux Ubuntu 16.04. We used gcc version 5.4.0. The benchmark 
result is shown in Table 9. 

Table 9. Benchmark results 

Param Key Gen Encryption Decryption 

ntru-kem-443 440 µs 82 µs 109 µs 
ntru-pke-443 472 µs 84 µs 109 µs 
ntru-kem-743 1017 µs 140 µs 210 µs 
ntru-pke-743 990 µs 121 µs 195 µs 
ntru-kem-1024 43.5 ms 67 ms 115 ms 
ntru-pke-1024 43.2 ms 67 ms 115 ms 

Optimizations not in this submission package. There are two optimizations that 
we are aware of, that are not included in this submission package. Namely 

1. A constant time, AVX2 based optimization for polynomial multiplication 
[16]; this accelerates polynomial multiplication by 2.3 times. 

2. Product form polynomials [24]; this decreases the speed of polynomial mul-
tiplications by around 3 times. 

We do not provide the first optimization, since it is prohibited by the submission. 
We also do not provide the second optimization for conservative purposes. 

Potential improvements not in this submission package. There are also three 
potential improvements that we are aware of, that are not included in this sub-
mission. 

1. A better Gaussian sampler. 
2. A security argument against a quantum random oracle. 
3. Efficient Number Theoretic Transform (NTT). 

The first two items are active research areas. We believe that we shall see many 
improvements from the PQC community and it is too early to fix on a single 
solution. We shall include those improvements once they are available, and when 
a minor revision is allowed. Nonetheless, we remark that our Box-Muller based 
Gaussian sampler is already quite efficient, and has previously been used in the 
literature, such as the HElib [22]. 

We did not implement item 3 due to time constrains. Our naive NTT algo-
rithm takes roughly O(N2/2) operations where N is the degree of the polyno-
mial. We are aware of the Cooley-Tukey method which runs in O(N log N) time, 
and improves signing speed up to 10 times in practice. We are willing to provide 
implementation of this during the revision phrase. 



3.7 Known Answer Test Values 

Please see the KAT folder. 

4 IPR Statement 

Please see the statement folder. 

References 

1. What is the world’s data storage capacity?, 2011. available from http://www. 
zdnet.com/article/what-is-the-worlds-data-storage-capacity/. 

2. The number of atoms in the World, 2014. available from http://www.fnal.gov/ 
pub/science/inquiring/questions/atoms.html. 

3. IEEE Std 1363.1-2008. IEEE Standard Specification for Public Key Cryptographic 
Techniques Based on Hard Problems over Lattices, 2008. 
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secure module-lattice-based KEM. IACR Cryptology ePrint Archive, 2017:634, 
2017. 

12. Sanjit Chatterjee, Neal Koblitz, Alfred Menezes, and Palash Sarkar. Another look 
at tightness II: practical issues in cryptography. In Paradigms in Cryptology -
Mycrypt 2016. Malicious and Exploratory Cryptology - Second International Con-
ference, Mycrypt 2016, Kuala Lumpur, Malaysia, December 1-2, 2016, Revised 
Selected Papers, pages 21–55, 2016. 

13. Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security estimates. 
In ASIACRYPT 2011, pages 1–20. Springer, 2011. 

http://www.zdnet.com/article/what-is-the-worlds-data-storage-capacity/
http://www.zdnet.com/article/what-is-the-worlds-data-storage-capacity/
http://www.fnal.gov/pub/science/inquiring/questions/atoms.html
http://www.fnal.gov/pub/science/inquiring/questions/atoms.html
https://blog.cr.yp.to/20140213-ideal.html


14. Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for NTRU 
problems and cryptanalysis of the GGH multilinear map without an encoding of 
zero. IACR Cryptology ePrint Archive, 2016:139, 2016. 

15. Don Coppersmith and Adi Shamir. Lattice attacks on NTRU. In EUROCRYPT, 
pages 52–61, 1997. 

16. Wei Dai, William Whyte, and Zhenfei Zhang. Optimizing polynomial convolution 
for ntruencrypt. TBA. 

17. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure Integration of Asymmetric and 
Symmetric Encryption Schemes, pages 537–554. Springer Berlin Heidelberg, Berlin, 
Heidelberg, 1999. 

18. Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Proceedings 
of the theory and applications of cryptographic techniques 27th annual international 
conference on Advances in cryptology, EUROCRYPT’08, pages 31–51, Berlin, Hei-
delberg, 2008. Springer-Verlag. 

19. Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using 
extreme pruning. In EUROCRYPT 2010, volume 6110 of LNCS, pages 257–278. 
Springer, 2010. 

20. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 
169–178, 2009. 

21. Lov K. Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, 
STOC ’96, pages 212–219, New York, NY, USA, 1996. ACM. 

22. Shai Halevi and Victor Shoup. Algorithms in helib. In Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, 
August 17-21, 2014, Proceedings, Part I, pages 554–571, 2014. 

23. Philip S. Hirschhorn, Jeffrey Hoffstein, Nick Howgrave-Graham, and William 
Whyte. Choosing ntruencrypt parameters in light of combined lattice reduction 
and MITM approaches. In Applied Cryptography and Network Security, 7th In-
ternational Conference, ACNS 2009, Paris-Rocquencourt, France, June 2-5, 2009. 
Proceedings, pages 437–455, 2009. 

24. Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William 
Whyte, and Zhenfei Zhang. Choosing parameters for ntruencrypt. In Topics in 
Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the RSA Conference 
2017, San Francisco, CA, USA, February 14-17, 2017, Proceedings, pages 3–18, 
2017. 

25. Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William 
Whyte, and Zhenfei Zhang. Choosing Parameters for NTRUEncrypt. In Topics 
in Cryptology - CT-RSA 2017, The Cryptographers’ Track at the RSA Conference 
2017, 2017. 

26. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public 
key cryptosystem. In Algorithmic Number Theory, Third International Symposium, 
ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, pages 267–288, 
1998. 

27. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public 
key cryptosystem. In Algorithmic Number Theory, Third International Symposium, 
ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, pages 267–288, 
1998. 

28. Jeffrey Hoffstein and Joseph H. Silverman. Meet-in-the-middle Attack on an NTRU 
private key, 2006. available from http://www.ntru.com. 

29. Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack 
against NTRU. In CRYPTO, pages 150–169, 2007. 

http://www.ntru.com


30. Nick Howgrave-Graham, Joseph H. Silverman, Ari Singer, and William Whyte. 
NAEP: provable security in the presence of decryption failures. IACR Cryptology 
ePrint Archive, 2003:172, 2003. 

31. Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte. Choosing 
parameter sets for ntruencrypt with naep and sves-3. In Topics in Cryptology 
- CT-RSA 2005, The Cryptographers’ Track at the RSA Conference 2005, San 
Francisco, CA, USA, February 14-18, 2005, Proceedings, pages 118–135, 2005. 

32. Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe. High-
speed key encapsulation from NTRU. In Cryptographic Hardware and Embedded 
Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September 
25-28, 2017, Proceedings, pages 232–252, 2017. 

33. Paul Kirchner and Pierre-Alain Fouque. Comparison between subfield and straight-
forward attacks on NTRU. IACR Cryptology ePrint Archive, 2016:717, 2016. 

34. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption. In 
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 
2012, New York, NY, USA, May 19 - 22, 2012, pages 1219–1234, 2012. 

35. Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient 
one-way functions. Computational Complexity, 16(4):365–411, 2007. 
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