
NIST PQ Submission: NTRUEncrypt
A lattice based encryption algorithm

Cong Chen2, Jeffrey Hoffstein1, William Whyte2, and Zhenfei Zhang2

1 Brown University, Providence RI, USA, jhoff@math.brown.edu
2 OnBoard Security, Wilmington MA, USA,
{cchen,wwhyte,zzhang}@onboardsecurity.com

1 Cover Sheet

This is an overview document of the NTRU lattice-based cryptosystem for sub-
mission to the NIST post-quantum cryptography call for standardization. The
submitted cryptosystem consists of :

– ntru-pke: a public key encryption (PKE) scheme based on the “original
NTRU” encryption algorithm by Hoffstein, Pipher and Silverman [26] with
parameter sets derived from a recent revision [24], that achieves CCA-2 se-
curity via NAEP transformation [30];

– ntru-kem: a key encapsulation mechanism (KEM) using the above public key
encryption algorithm;

– ss-ntru-pke: a public key encryption scheme based on the provable secure
NTRU encryption algorithm [36] that achieves CCA-2 security via NAEP
transformation [30];

– ss-ntru-kem: a key encapsulation mechanism (KEM) using the above public
key encryption algorithm.

This documents addresses the following requirements:

– Specifications
– Performance analysis
– A statement of the advantages and limitations
– Cover sheet
– Reference implementation
– Security analysis
– Statement of IPR

Submission information:

– Principal submitter: Zhenfei Zhang, zzhang@onboardsecurity.com, On-
board Security, 187 Ballardvale St. Suite A202, Wilmington, MA, 01887,
U.S.

– Auxiliary submitters: Chen Cong, Jeffrey Hoffstein and William Whyte.
– Inventors of the cryptosystem: Jeffrey Hoffstein, Jill Pipher, John M.

Schanck, Joseph H. Silverman, William Whyte and Zhenfei Zhang.

mailto:zzhang@onboardsecurity.com
mailto:cchen,wwhyte,zzhang}@onboardsecurity.com
mailto:jhoff@math.brown.edu

– Name of the owner of the cryptosystem: Onboard Security Inc.
– Backup point of contact: William Whyte, wwhyte@onboardsecurity.com,

Onboard Security, 187 Ballardvale St. Suite A202, Wilmington, MA, 01887,
U.S.

The following academic papers contain cryptographic designs, hardness re-
sults, security analysis and parameter derivations related to the submitted cryp-
tosystem.

– NTRU, A ring-based public key cryptosystem, 1998.
– NAEP: provable security in the presence of decryption failures, 2003.
– A hybrid lattice-reduction and meet-in-the-middle attack against NTRU, 2007.
– Choosing NTRUEncrypt parameters in light of combined lattice reduction

and MITM approaches, 2008.
– Making NTRU as secure as worst-case problems over ideal lattices, 2011.
– Choosing parameters for NTRUEncrypt, 2017.

Additional information related to implementations, such as public key/private
key encodings, conversions, etc. can be found in the additional supporting doc-
ument:

– Efficient Embedded Security Standard (EESS) #1. Version 3.3, 2017.

2 Algorithm Specifications

2.1 Notation

We use lower case bold letters for vectors, upper case bold letters for matrices.
For a polynomial f(x) = f0 + f1x + · · · + fn−1x

n−1, we denote its vector form
.by f .= hf0, f1, . . . , fn−1i. We sometimes abuse the notation of vector and poly-

nomial when there is no ambiguity. For a polynomial/vector f , the norms are qPn−1 .kfk ..= f2 and kfk∞ .= max(|fi|).i=0 i
.We often use the polynomial rings Rq .= Z[x]/F (x) with F (x) = xn ± 1. A

cyclic rotated matrix of a polynomial f(x) over the ring Rq is a matrix M =
)T n(f1, f2, . . . , fn with fi = f(x)xi−1 mod F (x). If F (x) = x − 1 it is literally

cyclic, and it is close to cyclic, up to signs, if F (x) = xn + 1.
For a real a, we let bae denote the closet integer to a. For an integer a, we use

.[a]q to denote a mod q; bacp .= (a− [a]p)/p for the operation of rounding a to the
closest multiple of p. Modular operations are center lifted, for example a mod q
returns an integer within −q/2 and q/2. These notations are also extended to
vectors and matrices.

We set the notation:

BN = {binary polynomials}
TN = {trinary polynomials}� �

trinary polynomials with exactly TN (d, e) =
d ones and e minus ones

If N is fixed we will write B, T and T (d, e) instead.

mailto:wwhyte@onboardsecurity.com

2.2 NTRU and lattices

A lattice L is a discrete sub-group of Rn, or equivalently, the set of all the integral
combinations of d ≤ n linearly independent vectors over R:

L ..= Zb1 + Zb2 + · · · + Zbd, bi ∈ Rn .

B ..= (b1, . . . , bd)
T is called a basis of L.

Definition 1 (γ-SVP and uSVP). Given a lattice L, finding a vector that
is no longer than γ · λ1(L) is called the approximate shortest vector problem
(γ-SVP), where λ1 is the first minima, i.e, the length of the shortest vector, of
the lattice.

Given a particular lattice L, where there exists a unique shortest non-zero
vector, finding this vector is called the unique shortest vector problem.

Let f(x), g(x) and h(x) be 3 polynomials in Rq, where f(x) and g(x) have
−1very small coefficients; h(x) = p g(x)f−1(x). We express by f , g and h the

vector form of the polynomials. Also let F, G and H be the matrix obtained
from nega-cyclic rotations. The NTRU lattice with regard to h is defined as

Lh = {(u, v) ∈ R2 : uh = v}q

or rather, the vector/matrix form:

Lh = {(u, v) : uH = v mod q}� �
0 qINwhere there exists a public basis P = and a secret generator [pF|G].
IN H

Definition 2 (NTRU assumption). Given h, it is hard to find f and g.

The NTRU assumption can be reduced to the uSVP for the NTRU lattice.

2.3 Auxiliary functions

Let us first define some auxiliary functions. Those functions are the building
blocks for our algorithm. We give a generic description for those functions. Im-
plementers may choose to use better (more secure or more efficient) instantia-
tions when and if they are available. Also note that Gaussian samplers are only
used by ss-ntru-pke and ss-ntru-kem.

Hash function. Through out the paper we will use Hash to denote a crypto-
graphic secure hash function that takes arbitrary input length and outputs a
binary string with arbitrary length. In our submission, we use SHA-512 for such
an instantiation.

Seed expansion function. We will use a Salsa20 [10] based pseudo-random number
generator as the seed expansion function. Salsa20 is a fast and well accepted
stream cipher. It is up to 5 times faster than the AES based solutions through
our benchmark on computers that do not have AES-NI instructions. We remark
that although we did not use the AES-based seed expansion function provided
by NIST for efficiency reasons, such a modification can be made quite easily.

Trinary Polynomial Generation function. This implementation require a func-
tion that samples uniformly from B, T and T (d, e). This function can be build
deterministically via a seed and a hash function.

Discrete Gaussian sampler (DGS). Input a dimension N and a standard devia-
tion σ it outputs a discrete Gaussian distributed vector. In this implementation
we use the Box-Muller approach. We remark that there are better samplers in
terms of efficiency or security. We leave the investigation of those samplers to
future work.

Deterministic Discrete Gaussian sampler (DDGS). Input a dimension N , a stan-
dard deviation σ and a seed s, it deterministically outputs a discrete Gaussian
distributed vector.

2.4 The schemes

We sketch the algorithms related to our proposed schemes. For simplicity and
clearness of the presentation, we omit minor details in this high level description.
Those include, for example, checking that the length of the message is valid,
encoding/packing ring elements into binary strings and vice versa, etc. For those
details we refer the readers to the implantation specification document submitted
along with this document.

The ntru-pke scheme . The ntru-pke schemes use Algorithms 1, 2 and 3.
In an NTRU cryptosystem, f (and g, if required) are the private keys, while h

is the public key. Those keys can be generated via algorithm 1. Note that we use
the classical NTRU flat form (non-product form, cf. [24]) keys with a pre-fixed
number of +1s and −1s.

Algorithm 1 ntru-pke.KeyGen
Input: A parameter set Param = {N , p, q, d} and a seed.
1: Instantiate Sampler with T (d + 1, d) and seed;
2: f ← Sampler
3: if f is not invertible mod q then go to step 2 end if
4: g ← Sampler
5: h = g/(pf + 1) mod q
Output: Public key h and secret key (pf , g)

Algorithm 2 ntru-pke.Encrypt
Input: Public key h, message msg of length mlen, a parameter set Param and a seed.
1: m = Pad(msg, seed)
2: rseed = Hash(m|h)
3: Instantiate Sampler with T and rseed;
4: r ← Sampler
5: t = r ∗ h
6: tseed = Hash(t)
7: Instantiate Sampler with T and tseed;
8: mmask ← Sampler
9: m 0 = m − mmask (mod p)

010: c = t + m
Output: Ciphertext c

The encryption algorithm in Algorithm 2 uses a padding method to deal with
potential insufficient entropy in a message. Assuming the message length is valid
and less than (N − 173) bits , the padding algorithm works as follows:

1. Convert msg into a bit string. Each bit forms a binary coefficient for the
lower part of the polynomial m, starting from coefficient 0.

2. The last 167 coefficients of m(x) are randomly chosen from {−1, 0, 1} (with
an input seed). This gives over 256 bits entropy.

3. The length of msg is converted into an 8 bit binary string, and forms the
last 173 to 168 coefficients of m(x).

Algorithm 3 ntru-pke.Decrypt
Input: Secret key f , public key h, ciphertext c, and a parameter set Param.
1: m 0 = f ∗ c (mod p)
2: t = c − m
3: tseed = Hash(t)
4: Instantiate Sampler with T and tseed;
5: mmask = Sampler
6: m = m 0 + mmask (mod p)
7: rseed = Hash(m|h)
8: Instantiate Sampler with T and rseed;
9: r ← Sampler
10: msg, mlen = Extract(m)
11: if p · r ∗ h = t then
12: result = msg, mlen
13: else
14: result = ⊥
15: end if
Output: result

The Extract() operation in Algorithm 3 is the inverse of Pad() so we omit
the details. It outputs a message m and its length mlen.

Remark 1. Since NIST’s API does not have an input field for the public key
h, we have encoded the public key in the secret key to make the algorithm
compatible with the existing API.

The ntru-kem algorithms We recommend that ntru-kem to be used for ephemeral
key establishments via the following algorithms. ntru-kem uses a same key gen-
eration algorithm as ntru-pke, namely, Algorithm 2. Here we present the encap-
sulation and decapsulation algorithms in Algorithms 4 and 5.

In a nutshell, the ntru-kem scheme uses an ntru-pke scheme to transport an
encapsulated secret, and uses both this secret and the public key to derive a
shared secret via a secure Key Derivation Function (KDF).

Algorithm 4 ntru-kem.Encap
Input: Public key h, a parameter set Param, and a seed
1: encaped secret ← {0, 1}8×CRYPTO BYTES

2: c =ntru-pke.Encrypt(h, encaped secret, CRYPTO BYTES, Param, seed)
3: ss = KDF(encaped secret, h).
Output: A ciphertext c and the shared secret ss.

Algorithm 5 ntru-kem.Decap
Input: Secret key f and a parameter set Param
1: encaped secret =ntru-pke.Decrypt(f , h, c, Param);
2: ss = KDF(encaped secret, h).
Output: The shared secret ss.

The ss-ntru-pke algorithms The ss-ntru-pke schemes use Algorithms 6, 7 and
8.

Algorithm 6 ss-ntru-pke.KeyGen
Input: Parameter sets Param = {N , p, q, σ} and a seed
1: Instantiate Sampler with χN

σ and seed;
2: f ← Sampler, g ← Sampler;
3: h = g/(pf + 1) mod q
Output: Public key h and secret key (pf , g)

ss-ntru-pke uses a similar key generation algorithm as ntru-pke. The major
difference is that f and g are sampled from a Gaussian with deviation σ, rather
than from T (d, d + 1). In addition, since ss-ntru-pke works over the polynomial
ring Zq [x]/(x

N + 1), where every element has an inverse, we are not required to
check if f and g has an inverse.

Algorithm 7 ss-ntru-pke.Encrypt
Input: Public key h, message msg of length mlen, Param and a seed
1: m = Pad(msg, seed)
2: rseed = Hash(m|h)
3: Instantiate Sampler with χN

σ and rseed;
4: r ← Sampler, e ← Sampler
5: t = p · r ∗ h
6: tseed = Hash(t)
7: Instantiate Sampler with B and tseed;
8: mmask ← Sampler
9: m 0 = m − mmask (mod p)
10: c = t + p · e + m 0

Output: Ciphertext c

Algorithm 8 ss-ntru-pke.Decrypt
Input: Secret key f , public key h, ciphertext c, and a parameter Param.
1: m 0 = f ∗ c (mod p)
2: t = c − m
3: tseed = Hash(t)
4: Instantiate Sampler with B and tseed;
5: mmask ← Sampler
6: m = m 0 + mmask (mod p)
7: rseed = Hash(m|h)
8: Instantiate Sampler with χN

σ and rseed;
9: r ← Sampler
10: e = p −1(t − r ∗ h)
11: if |e|∞ ≥ τσ then
12: result = ⊥
13: else
14: result = Extract(m)
15: end if
Output: result

The ss-ntru-kemalgorithms The algorithms for ss-ntru-kem are described in 9
and 10. It uses the same method as ntru-kem to convert a public key encryption
scheme into a key encapsulation mechanism.

Algorithm 9 ss-ntru-kem.Encap
Input: Public key h, message msg of length mlen, a parameter set Param and a seed
1: encaped secret ← {0, 1}8×CRYPTO BYTES

2: c =ss-ntru-pke.Encrypt(h, encaped secret, CRYPTO BYTES, Param, seed)
3: ss = KDF(encaped secret, h).
Output: A ciphertext c and the shared secret ss.

Algorithm 10 ss-ntru-kem.Decap
Input: Secret key f and a parameter set Param
1: encaped secret =ss-ntru-pke.Decrypt(f , h, c, Param);
2: ss = KDF(encaped secret, h).
Output: The shared secret ss.

3 Design Rationale

3.1 Hardness assumption

Overview We first give an overview of the hardness assumptions in this pro-
posal.

– For ntru-pke and ntru-kem schemes:
• The CPA security is based on the NTRU assumption;
• We use the NAEP transformation [31] to convert the scheme into a CCA-
2 secure encryption scheme.

– For ss-ntru-pke and ss-ntru-kem schemes:
• The CPA security is based on the ring learning with error (R-LWE)
problem [36];

• We use the NAEP transformation [31] to convert the scheme into a CCA-
2 secure encryption scheme.

All the above problems and notions are well studied in the literature, except
perhaps for the NAEP transform. Therefore we give a high level description of
NAEP and show its connections to the well-known Fujisaki-Okamoto transform.

NAEP transform In [17], the authors proposed a generic method to transform
a CPA secure encryption algorithm into a CCA-2 secure version. This method
is usually referred to as Fujisaki-Okamoto transform. At a high level, it works
as follows. During the encryption, one first chooses a salt, and appends it to the
message. Then one hashes the appended message into a random element that is
to be used in the encryption. During the decryption, after one has recovered the
padded message, one re-encrypts the message with the same salt, and compares
the resulting ciphertext with the received one. If those two does not match, abort
the decryption.

The NEAP [31] transform that we use in Algorithms 2 and 7 is similar to the
above Fujisaki-Okamoto transform. In addition, it builds an additional all-or-
nothing mask which is also derived from the hash of the padded message. With

this mask, one will either recover all the coefficients of the message polynomial,
or no coefficient at all. It also seals the information leakage of m(1) when a
polynomial ring of the form xN − 1 is used.

3.2 Parameters

We present our parameter sets in Table 1 and the macros related to NIST’s APIs
in Table 2. We estimate that

– NTRU-443 provides 128 bits classical security and 84 bits quantum security;
– NTRU-743 provides 256 bits classical security and 159 bits quantum security;
– NTRU-1024 provides �256 bits classical security and 198 bits quantum se-

curity.

The details of the above estimations shall be presented in the next subsection.

Table 1. Parameters

Param N q p R d σ MaxMSGLen

NTRU-443

NTRU-743

NTRU-1024

443

743

1024

2048

2048

230 + 213 + 1

3

3

2

Zq [x]
xN −1
Zq [x]
xN −1
Zq [x]
xN +1

143

247

N/A

N/A

N/A

724

33 bytes

73 bytes

95 bytes

Table 2. MACRO definitions for NIST’s API

Param NTRU-443 NTRU-743 NTRU-1024
Scheme ntru-pke ntru-kem ntru-pke ntru-kem ss-ntru-pke ss-ntru-kem

CRYPTO SECRETKEYBYTES
CRYPTO PUBLICKEYBYTES

CRYPTO BYTES
CRYPTO CIPHERTEXTBYTES

701
611
32
611

1173
1023
48

1023

8194
4097
48

4097

We address NIST’s required security levels as follows:

– Level 1, equivalent to a128-bit block cipher: use ntru-pke and ntru-kem with
parameter set NTRU-443 or NTRU-743;

– Level 2, equivalent to a 256-bit hash function: use ntru-pke and ntru-kem with
parameter set NTRU-743;

– Level 3, equivalent to a 192-bit block cipher: use ntru-pke and ntru-kem with
parameter set NTRU-743;

– Level 4, equivalent to a 384-bit hash function: use ntru-pke and ntru-kem with
parameter setNTRU-743, or (for extremely conservative purpose) ss-ntru-
pke and ss-ntru-kem with parameter set NTRU-1024;

– Level 5, equivalent to a 256-bit block cipher: use ntru-pke and ntru-kem with
parameter set NTRU-743, or (for extremely conservative purpose) ss-ntru-
pke and ss-ntru-kem with parameter set NTRU-1024.

3.3 Best known attacks

Summary In this evaluation, we will

1. follow the original BKZ 2.0 analysis [13] with the extreme pruning method
to estimate the classical security;

2. follow the new analysis in [6] using BKZ 2.0 with quantum sieving to estimate
the quantum security.

For completeness, we also give the analysis result of

3. the new analysis in [6] using BKZ 2.0 with classical sieving.

However, we will not use this result to estimate the classical security, due to the
excessive space requirement. We will give more details in the following sections.

Table 3. Best Known attacks and their costs

Param
BKZ + Enum BKZ + Sieving BKZ + QSieving
uSVP Hybrid uSVP Hybrid uSVP Hybrid

NTRU-443 189 128 93 89 85 84
NTRU-743 443 268 176 173 159 163
NTRU-1024 590 805 218 316 198 287

Lattice attacks For an NTRUEncrypt public key polynomial h, let H be the
matrix whose row vectors are the cyclic rotation of h. Then the NTRU lattice
associated with h uses a basis � �

qIN 0
B =

H IN

where IN is an N -dimensional identity matrix. With in this NTRU lattice, there
exist unique shortest vectors, namely, the vector form of hf , gi and its cyclic
rotations.

This attack was firstly presented in the original NTRU paper [27] circulated
during the rump session of Crypto’96. It was later observed in [15] that one
does not necessarily need to find the exact secret key to be able to decrypt. An
attack is successful if the attacker can locate any vectors in this lattice that are
sufficiently small (such as a cyclic rotation of the secret key).

It has been shown in [18] that the ability to locate a unique shortest vector
in a lattice depends on the root Hermite factor of the lattice, which is the n-th
root of

Gaussian expected length
l2 norm of the target vector

where n is the dimension of the lattice.
Here, we give an estimation of the root Hermite factor for the proposed

parameter set. This lattice has a dimension of 2N . The Gaussian expected length
of the shortest vector in this lattice is p

qN/πe,

while the l2 norm of the target vectors are kf , gk2. This gives the root Hermite
factor of the lattice as p ! 1

Nq/πe
2N

.
kf , gk2 p

For ntru-pke and ntru-kem we have kf , gk2 ≈ 4N/3, while for ss-ntru-pke and√
ss-ntru-kem we have kf , gk2 ≈ 2Nσ. The table below gives the root Hermite
factor of corresponding parameter sets.

Table 4. Root Hermite Factor for NTRU lattices

N q kf , gk2√ rhf
443 2048 572 ≈ 23.92√ 1.0030
743 2048 988 ≈ 31.43 1.0020
1024 230 + 213 + 1 32764.5 1.0011

It was believed that the current technique of BKZ 2.0 [13] is only able to find
a short vector with a root Hermite factor of at least 1.005. However, in [6], the
authors give a conservative analysis of the cost of BKZ 2.0 reduction. As pointed
out by the authors themselves, those estimations are very optimistic about the
abilities of an attacker. In particular, unlike the analysis of BKZ 2.0 [13], where
the cost of shortest vector subroutines is estimated via the cost of enumeration
with extremely pruning [19], this analysis assumes that for large dimensional
lattices, shortest vector problems can be solved very efficiently using heuristic
sieving algorithms, ignoring the sub-exponential to exponential requirement of
space.

Giving a few details, the best known classical and quantum sieving algorithms
have time costs of 20.292n and 20.265n, respectively [7]. The best plausible quan-
tum short vector problem solver costs more than 20.2075n since this is the space
required to store the list of vectors. In practice, sieving tends to process much
slower than enumeration techniques. Moreover, sieving algorithms require a sim-
ilar level of space complexity (exponential in n), while the space requirement of
enumeration techniques is polynomial.

�

For the sake of completeness, we present the estimated cost of BKZ with
classical and quantum sieving algorithms, following the methodology of [6]. It is
easy to see that the space requirement for classical sieving algorithms is far from
practical. For example, it is estimated that the world’s storage capacity is around
295 exabytes ≈ 268 bits [1]; and the number of atoms in the whole earth is around
1049 ≈ 2162 [2]. Thus we do not use BKZ with classical sieving to estimate the
classical security of our parameters. Nonetheless, we do use BKZ with quantum
sieving algorithms to estimate the quantum security, in accounting for unknown
effects on data storages with quantum computers.

Table 5. Lattice strength following analysis of [6]

N m b Known Classical Known Quantum Best Plausible Space Requirement
443
743
1024

390 321
613 603
1870 747

93
176
218

85
159
198

66
125
155

> 266

> 2125

> 2155

m: the number of used samples
b: block size for BKZ 2.0

Known Classical: using the best known classical SVP solver
Known Quantum: using the best known quantum SVP solver

Best Plausible: using a best plausible quantum SVP solver
Space Requirement: requirement for all 3 sieving algorithms

Search attack For NTRU with trinary keys, since the secret keys are trinary
polynomials with df number of 1s and −1s, the search space for the secret key is

N
�

df,df /N . For example, with parameter set NTRU-743, we have 21158 candidates.
(The factor 1/N comes from the fact that an attacker can guess any of N cyclic
rotations of the secret key, rather than just the secret key itself.) We remark that
this key space for our parameter set is considerably larger than that in [25] due
to the switch from product form polynomials to flat form polynomials. This is
sufficient even with the presence of meet-in-the-middle attacks [28] and quantum
attacks using Grover’s algorithm [21].

Hybrid attack The previous best known attack against NTRU, prior to the
BKZ with quantum sieving analysis [6], was the hybrid attack [29] which is a
hybrid of a lattice attack and a meet-in-the-middle search attack.

The rough idea is as follows. One first chooses N1 < N and extracts a block,
B1, of 2N1 × 2N1 coefficients from the center of the matrix B. The rows of B1

are taken to generate a lattice L1. ⎞ ��
0qIN =

⎛⎝ qIr1 0 0
∗ B1 0
∗ ∗ Ir2

⎠
H IN

(1)

A lattice reduction algorithm is applied to find a unimodular transformation, U0 ,
such that U0B1 is reduced, and an orthogonal transformation, Y0, is computed
such that U0B1Y

0 = T0 is in lower triangular form. These transformations are
applied to the original basis to produce a basis for an isomorphic lattice:

T = UBY =

⎛⎝ Ir1 0 0
0 U0 0
0 0 Ir2

⎛⎝ ⎞ ⎠ qIr1 0 0
∗ B1 0
∗ ∗ Ir2

⎛⎝ ⎞ ⎠ Ir1 0 0
0 Y0 0
0 0 Ir2

⎞
=

⎛⎝ qIr1 0 0
∗ T0 0
∗ ∗ Ir2

⎞ ⎠ ⎠ .(2)

Notice that (g, f)Y is a short vector in the resulting lattice.
By a lemma of Furst and Kannan (Lemma 1 in [29]), if y = uT+x for vectors

u and x in Z2N , and −Ti,i/2 < xi ≤ Ti,i/2, then reducing y against T with
Babai’s nearest plane algorithm will yield x exactly. Thus if v is a shortest vector
in L and T is well reduced, it is guaranteed that v can be found by enumerating
candidates for its final K = 2N − r2 coefficients. In the initial hybrid attack
paper, this enumerating process was done via meet-in-the-middle attacks. To
accommodate the quantum attack models, we will use Grover’s algorithm to
analize the cost of this enumeration.

Now we are ready to present the cost of the classical hybrid attack and
compare it with solving directly the uSVP.

Table 6. BKZ with classical enumeration, hybrid attack vs. uSVP

Param
Hybrid Attack Parameters uSVP
dim β K Cost β cost

NTRU-443
NTRU-743
NTRU-1024

620
890
2047

241
413
953

161
338
140

> 128
> 267
> 811

321
602
747

> 189
> 443
> 590

Table 7. BKZ with quantum sieving, hybrid attack vs. uSVP

Param
Hybrid Attack Parameters uSVP
dim β K Cost β cost

NTRU-443
NTRU-743
NTRU-1024

411
645
2047

317
616
1901

105
205
50

> 84
> 163
> 289

321
602
747

> 85
> 159
> 198

Subfield attack Subfield attacks against NTRU have been considered in [8]. It
was reported in [4] that for certain “over-stretched” NTRU parameters, one can
exploit a subfield. This attack was only applicable to the NTRU lattices that are
used to instantiate a (fully) homomorphic encryption scheme. The authors of [4]
also showed that for our parameters the subfield attack will not be successful.

3.4 Decryption error rates

We summarize the result in Table 8.

Table 8. Decryption error rate

NTRU-443 NTRU-743 NTRU-1024
< 2−196 < 2−112 < 2−80

We note that for all three parameter sets, it is safe to assume that no decryp-
tion errors will be observed, assuming the maximum number of key exchange or
encryption that one will perform is bounded by 264 as suggested by NIST.

For detailed analysis of decryption rate of NTRU-443 and NTRU-743, see [24].
For NTRU-1024, we give the following analysis.

Recall that in decryption one computes

0 m = f ∗ c = p · r ∗ g + p · e ∗ f + m 0 ∗ f mod q.

A decrypt error will occur if kp · r ∗ g + p · e ∗ f + m0 ∗ f k∞ > q/2 which will
cause a wraparound. It is sufficient to focus on the first two terms since m0 is a
lot smaller than p · r ∗ g or p · e ∗ f . Hence we need to compute the probability
that

kr ∗ g + e ∗ fk∞ > q/(2p)

Two simplify the analysis, we know that r, g, e, f are all sampled from Gaussian
with σ, therefore each coefficient of (r ∗ g + e ∗ f) is a sum of 2N products of two
Gaussian integers. The distribution of product of two Gaussian integers with a
same deviations σ is a normal product distribution

K0(σ
z
2)

D(z) =
πσ2

where Z ∞ cos (zt)
K0(z) = dt

0 t2 + 1

This allows us to estimate that

Prob[x > q/(4Np)] / 2−102

for a single integer with normal product form distribution. Since each coefficient
of (r ∗ g + e ∗ f) is a sum of 2N samples from D(z), require the above event
happens for the all the 2N samples for each coefficients, therefore we estimate
that the decryption error rate will be

1 − (1 − 2−102)(2N)2

≈ 2−80

3.5 Advantages and limitations

Most scrutinized lattice-based cryptosystem The NTRU encryption algorithm
was created in 1996, and has survived over 20 years of cryptanalysis. It’s cryp-
tographic design has been a fertile source of inspiration to other cryptographers,
with uses ranging from the notion of ideal lattices [35] to the construction of
some fully homomorphic encryption schemes [20,34]. To date, we see many can-
didate quantum safe algorithms building upon NTRU or related ideas, such as
NTRU-prime [9] and NTRU-KEM [32]. The NTRU trapdoor is still the most
efficient way to design lattice based signature schemes.

The NTRU algorithm was standardized by IEEE 1363 [3] in 2008 and ANSI
X9.98 [37] in 2010. Both standards use the parameters from [23] in 2008. Those
parameters have been stable for almost 10 years, despite of the rapid development
of lattice cryptanalysis over the last decade, including BKZ 2.0 [13], BKZ 2.0
with sieving [6], subfield attacks [8,5,14,33] and more.

Small package sizes NTRU has the smallest public key and ciphertext sizes,
compared to other lattice based solutions, such as NewHope [6] or Kyber [11].
This is particularly interesting for handshake protocols, since in those protocols,
it is crucial to fit the handshake payloads in a single Maximum Transmission Unit
(MTU). Otherwise, one would expect some package drops that may potentially
slow down the protocol and require additional protocol-level features (such as
fragmentation management), or even cause the handshake to fail.

The MTU is usually 1.5 kbytes. It allows for a maximum package payload
of around 1 kbytes, with the rest reserved for hello messages. The NTRU based
solutions, to the best of our knowledge, are the only ones that fit in this model.

Lack of provable security One question that has been asked frequently about
NTRU is its lack of provable security. To be precise, one can reduce the security
of NTRU encryptions to the unique shortest vector problem over an NTRU lattice.
The “lack of security” here means that, unlike some LWE based schemes, where
the uSVP problem is over a generic lattice, and may be proven hard for certain
parameters (which are often not the same parameters used to instantiate the
actual scheme, see [12] for example), the uSVP problem for NTRU lattices has
no proof of hardness.

We provide two arguments to address this concern. First, in [36] it was shown
that one can establish a reduction to R-LWE problems for certain choices of
parameters. Indeed, the ss-ntru-pke algorithms in this submission follows this
direction.

On the other hand, in order to provide best performance, we also derive
parameters for ntru-pke, based on the best known attacks with a comfortable
margin. To validate our understanding of cryptanalytic techniques, we published
the NTRU challenge. Only the first few challenges of tiny dimensions have been
broken, as we expected, and the running time to break those challenges aligns
with our expectation [24].

3.6 Performance and implementations

Benchmark We present the benchmark results in Table 9. We tested our imple-
mentation with a dual core Intel i7- 6600U processor @ 2.60GHz. Our operation
system was Linux Ubuntu 16.04. We used gcc version 5.4.0. The benchmark
result is shown in Table 9.

Table 9. Benchmark results

Param Key Gen Encryption Decryption

ntru-kem-443 440 µs 82 µs 109 µs
ntru-pke-443 472 µs 84 µs 109 µs
ntru-kem-743 1017 µs 140 µs 210 µs
ntru-pke-743 990 µs 121 µs 195 µs
ntru-kem-1024 43.5 ms 67 ms 115 ms
ntru-pke-1024 43.2 ms 67 ms 115 ms

Optimizations not in this submission package. There are two optimizations that
we are aware of, that are not included in this submission package. Namely

1. A constant time, AVX2 based optimization for polynomial multiplication
[16]; this accelerates polynomial multiplication by 2.3 times.

2. Product form polynomials [24]; this decreases the speed of polynomial mul-
tiplications by around 3 times.

We do not provide the first optimization, since it is prohibited by the submission.
We also do not provide the second optimization for conservative purposes.

Potential improvements not in this submission package. There are also three
potential improvements that we are aware of, that are not included in this sub-
mission.

1. A better Gaussian sampler.
2. A security argument against a quantum random oracle.
3. Efficient Number Theoretic Transform (NTT).

The first two items are active research areas. We believe that we shall see many
improvements from the PQC community and it is too early to fix on a single
solution. We shall include those improvements once they are available, and when
a minor revision is allowed. Nonetheless, we remark that our Box-Muller based
Gaussian sampler is already quite efficient, and has previously been used in the
literature, such as the HElib [22].

We did not implement item 3 due to time constrains. Our naive NTT algo-
rithm takes roughly O(N2/2) operations where N is the degree of the polyno-
mial. We are aware of the Cooley-Tukey method which runs in O(N log N) time,
and improves signing speed up to 10 times in practice. We are willing to provide
implementation of this during the revision phrase.

3.7 Known Answer Test Values

Please see the KAT folder.

4 IPR Statement

Please see the statement folder.

References

1. What is the world’s data storage capacity?, 2011. available from http://www.
zdnet.com/article/what-is-the-worlds-data-storage-capacity/.

2. The number of atoms in the World, 2014. available from http://www.fnal.gov/
pub/science/inquiring/questions/atoms.html.

3. IEEE Std 1363.1-2008. IEEE Standard Specification for Public Key Cryptographic
Techniques Based on Hard Problems over Lattices, 2008.

4. Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on over-
stretched NTRU assumptions - cryptanalysis of some FHE and graded encoding
schemes. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceed-
ings, Part I, pages 153–178, 2016.

5. Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on over-
stretched NTRU assumptions - cryptanalysis of some FHE and graded encoding
schemes. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceed-
ings, Part I, pages 153–178, 2016.

6. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages 327–343, 2016.

7. Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice sieving. IACR Cryp-
tology ePrint Archive, 2016:713, 2016.

8. Daniel J. Bernstein. A subfield-logarithm attack against ideal lattices, 2014. avail-
able from https://blog.cr.yp.to/20140213-ideal.html.

9. Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van
Vredendaal. NTRU prime. IACR Cryptology ePrint Archive, 2016:461, 2016.

10. DanielJ. Bernstein. The salsa20 family of stream ciphers. In Matthew Robshaw
and Olivier Billet, editors, New Stream Cipher Designs, volume 4986 of Lecture
Notes in Computer Science, pages 84–97. Springer Berlin Heidelberg, 2008.

11. Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS - kyber: a cca-
secure module-lattice-based KEM. IACR Cryptology ePrint Archive, 2017:634,
2017.

12. Sanjit Chatterjee, Neal Koblitz, Alfred Menezes, and Palash Sarkar. Another look
at tightness II: practical issues in cryptography. In Paradigms in Cryptology -
Mycrypt 2016. Malicious and Exploratory Cryptology - Second International Con-
ference, Mycrypt 2016, Kuala Lumpur, Malaysia, December 1-2, 2016, Revised
Selected Papers, pages 21–55, 2016.

13. Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security estimates.
In ASIACRYPT 2011, pages 1–20. Springer, 2011.

http://www.zdnet.com/article/what-is-the-worlds-data-storage-capacity/
http://www.zdnet.com/article/what-is-the-worlds-data-storage-capacity/
http://www.fnal.gov/pub/science/inquiring/questions/atoms.html
http://www.fnal.gov/pub/science/inquiring/questions/atoms.html
https://blog.cr.yp.to/20140213-ideal.html

14. Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for NTRU
problems and cryptanalysis of the GGH multilinear map without an encoding of
zero. IACR Cryptology ePrint Archive, 2016:139, 2016.

15. Don Coppersmith and Adi Shamir. Lattice attacks on NTRU. In EUROCRYPT,
pages 52–61, 1997.

16. Wei Dai, William Whyte, and Zhenfei Zhang. Optimizing polynomial convolution
for ntruencrypt. TBA.

17. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure Integration of Asymmetric and
Symmetric Encryption Schemes, pages 537–554. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1999.

18. Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Proceedings
of the theory and applications of cryptographic techniques 27th annual international
conference on Advances in cryptology, EUROCRYPT’08, pages 31–51, Berlin, Hei-
delberg, 2008. Springer-Verlag.

19. Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using
extreme pruning. In EUROCRYPT 2010, volume 6110 of LNCS, pages 257–278.
Springer, 2010.

20. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

21. Lov K. Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 212–219, New York, NY, USA, 1996. ACM.

22. Shai Halevi and Victor Shoup. Algorithms in helib. In Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part I, pages 554–571, 2014.

23. Philip S. Hirschhorn, Jeffrey Hoffstein, Nick Howgrave-Graham, and William
Whyte. Choosing ntruencrypt parameters in light of combined lattice reduction
and MITM approaches. In Applied Cryptography and Network Security, 7th In-
ternational Conference, ACNS 2009, Paris-Rocquencourt, France, June 2-5, 2009.
Proceedings, pages 437–455, 2009.

24. Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William
Whyte, and Zhenfei Zhang. Choosing parameters for ntruencrypt. In Topics in
Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the RSA Conference
2017, San Francisco, CA, USA, February 14-17, 2017, Proceedings, pages 3–18,
2017.

25. Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William
Whyte, and Zhenfei Zhang. Choosing Parameters for NTRUEncrypt. In Topics
in Cryptology - CT-RSA 2017, The Cryptographers’ Track at the RSA Conference
2017, 2017.

26. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public
key cryptosystem. In Algorithmic Number Theory, Third International Symposium,
ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, pages 267–288,
1998.

27. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public
key cryptosystem. In Algorithmic Number Theory, Third International Symposium,
ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, pages 267–288,
1998.

28. Jeffrey Hoffstein and Joseph H. Silverman. Meet-in-the-middle Attack on an NTRU
private key, 2006. available from http://www.ntru.com.

29. Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In CRYPTO, pages 150–169, 2007.

http://www.ntru.com

30. Nick Howgrave-Graham, Joseph H. Silverman, Ari Singer, and William Whyte.
NAEP: provable security in the presence of decryption failures. IACR Cryptology
ePrint Archive, 2003:172, 2003.

31. Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte. Choosing
parameter sets for ntruencrypt with naep and sves-3. In Topics in Cryptology
- CT-RSA 2005, The Cryptographers’ Track at the RSA Conference 2005, San
Francisco, CA, USA, February 14-18, 2005, Proceedings, pages 118–135, 2005.

32. Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe. High-
speed key encapsulation from NTRU. In Cryptographic Hardware and Embedded
Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings, pages 232–252, 2017.

33. Paul Kirchner and Pierre-Alain Fouque. Comparison between subfield and straight-
forward attacks on NTRU. IACR Cryptology ePrint Archive, 2016:717, 2016.

34. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption. In
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC
2012, New York, NY, USA, May 19 - 22, 2012, pages 1219–1234, 2012.

35. Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient
one-way functions. Computational Complexity, 16(4):365–411, 2007.

36. Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case prob-
lems over ideal lattices. In Advances in Cryptology - EUROCRYPT 2011 - 30th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, pages 27–47, 2011.

37. Accredited Standards Committee X9. Lattice-Based Polynomial Public Key Es-
tablishment Algorithm for the Financial Services Industry, 201.

	 NIST PQ Submission: NTRUEncrypt A lattice based encryption algorithm

